平行四边形数学教案(模板15篇)

时间:2023-12-02 09:16:44 作者:飞雪

教案模板能够帮助教师对自己的教学过程进行评估和改进,促进教师专业发展。以下是小编为大家整理的一些教案模板范文,供参考学习,期待对您的教学提供一些帮助。

数学教案-平行四边形的认识

知识技能:

1.在联系生活实际和动手操作的过程中初步认识平行四边形,使学生能够识别平行四边形,知道平行四边形容易变形的特性和对边相等的基本特征。

2.根据平行四边形的基本特征会在方格纸上画平行四边形。

过程方法:

1.使学生在观察、动手操作、想象,情境描述等活动中,通过有条理的思考和简单的推理,经历体验平行四边形的基本特征的过程,进一步积累认识图形的经验,形成表象,进而发展空间观念。

2.通过剪一剪,画一画,改一改等数学活动,培养学生运用数学的思维方式进行思考问题,知道同一个问题可以有不同的解决方法。

情感态度:

1.感受图形与生活的联系,使学生体会平行四边形在生活中的应用,培养数学应用意识,增强对“图形与几何”的学习兴趣。

2.通过多种学习方式促进学生积极参与数学活动,对数学有好奇心和求知欲。

教学重点:使学生知道平行四边形对边相等、容易变形的特征。

学具准备:长方形框,每人一长方形纸,尺子,剪刀。

教具准备:多媒体课件,各种图形、卡片。

数学教案-平行四边形的面积计算

教学内容。

教材64~66页的例题和“做一做”,练习十六的第1~3题。

教学目标。

能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。

情感目标:引导学生运用转化的思想探索规律。

教学重点。

教学难点。

教学准备。

powerpoint课件、平行四边形纸片、剪刀。

教学过程。

教学环节。

师生活动。

设计意图。

复习引入。

(二)出示不规则图形1。

15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。

3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。

结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。

突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。

公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。

练习反馈。

底5厘米,高3.5厘米底6厘米,高2厘米。

2、计算下面图形的`面积哪个算式正确?(单位:米)。

83。

4

6

3×83×64×86×83×44×6。

56平方厘米8厘米。

5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。

分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。

全课总结反思体验。

这节课我们学习了什么?你有哪些收获?

小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

作业。

数学总复习近平行四边形的教案

初三第二学期数学的教学已全面进入中考的总复习阶段,时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是我必须面对的问题。下面根据我所带班级情况,计划如下:

一、第一轮复习。

1、第一轮复习的形式。

第一轮复习的目的是要“过三关”:

(1)过记忆关。必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。

(2)过基本方法关。如,待定系数法求二次函数解析式。

(3)过基本技能关。如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。

基本宗旨:知识系统化,练习专题化,专题规律化。

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计初步等;将几何部分分为六个单元:几何基本概念,相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。配套练习以中考丛书为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应该注意的几个问题。

(1)必须扎扎实实地夯实基础。今年中考试题按难:中:易=1:3:6的比例,基础分占总分(120分)的60%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。

(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。

(3)不搞题海战术,精讲精练,举一反三、触类旁通。“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。而是有针对性的、典型性、层次性、切中要害的强化练习。

(4)定期检查学生完成的作业,及时反馈。教师对于作业、练习、测验中的问题,应采用集中讲授和个别辅导相结合,或将问题渗透在以后的教学过程中等手办法进行反馈、矫正和强化,有利于大面积提高教学质量。

(5)实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反馈”的方法。

(6)注重思想教育,断激发他们学好数学的自信心,并创造条件,让学困生体验成功。

(7)应注重对尖子的培养。在他们解题过程中,要求他们尽量走捷径、出奇招、有创意,注重逻辑关系,力求解题完整、完美,以提高中考优秀率。对于接受能力好的同学,课外适当开展兴趣小组,培养解题技巧,提高灵活度,使其冒“尖”。

二、第二轮复习(五月份)。

1、第二轮复习的形式。

2、第二轮复习应该注意的几个问题。

(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

(2)专题的划分要合理。

(3)专题的选择要准、安排时间要合理。专题选的准不准,主要取决于对教学大纲(以及课程标准)和中考题的研究。专题要有代表性,切忌面面俱到;专题要由针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题的特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

(4)注重解题后的反思。

(5)以题代知识,由于第二轮复习的特殊性,学生在某种程度上远离了基础知识,会造成程度不同的知识遗忘现象,解决这个问题的最好办法就是以题代知识。

(6)专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,提高学生的能力,这是第二轮复习的任务。但要兼顾各种因素把握一个度。

(7)专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海;不、能急于赶进度,在这里赶进度,是产生“糊涂阵”的主要原因。

(8)注重集体备课,资源共享。

三、第三轮复习(六月份)。

1、第三轮复习的形式。

第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。

2、第三轮复习应该注意的几个问题。

(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

(2)模拟题的设计要有梯度,立足中考又要高于中考。

(3)批阅要及时,趁热打铁。

(4)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能再占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。

(5)详细统计边缘生的失分情况。这是课堂讲评内容的主要依据。因为,缘生的学习情况既有代表性,又是提高班级成绩的关键,课堂上应该讲的是边缘生出错较集中的题,统计就是关键的环节。

(6)归纳学生知识的遗漏点。为查漏补缺积累素材。

(7)处理好讲评与考试的关系。每份题一般是两节课时间考试,两节课时间讲评,也就是说,一份题一般需要四节课的讲评时间。

(8)选准要讲的题,要少、要精、要有很强的针对性。选择的依据是边缘生的失分情况。一般有三分之一的边缘生出错的题课堂上才能讲。

(9)立足一个“透”字。一个题一旦决定要讲,有四个方面的工作必须做好,一是要讲透;二是要展开;三是要跟上足够量的跟踪练习题;四要以题代知识。切忌面面俱到式讲评。切忌蜻蜓点水式讲评,切忌就题论题式讲评。

(10)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。教师要充分利用这段时间,解决个别学生的个别问题。

(11)适当的“解放”学生,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证学生有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。

(12)调节学生的生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。

(13)心态和信心调整。这是每位教师的责任,此时此刻信心的作用变为了最大的成功!

文档为doc格式。

八年级数学《平行四边形》教案设计

1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.

2.使学生理解判定定理与性质定理的区别与联系.

3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.

(二)能力训练点。

1.通过“探索式试明法”开拓学生思路,发展学生思维能力.

2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力.

(三)德育渗透点。

通过一题多解激发学生的学习兴趣.

(四)美育渗透点。

通过学习,体会几何证明的方法美.

构造逆命题,分析探索证明,启发讲解.

1.教学重点:平行四边形的判定定理1、2、3的应用.

2.教学难点:综合应用判定定理和性质定理.

(强调在求证平行四边形时用判定定理在已知平行四边形时用性质定理).

数学教案-平行四边形面积计算

教学内容。

教材64~66页的例题和“做一做”,练习十六的第1~3题。

教学目标。

能力目标:通过操作进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力,发展学生的空间观念。

情感目标:引导学生运用转化的思想探索规律。

教学重点。

教学难点。

教学准备。

powerpoint课件、平行四边形纸片、剪刀。

教学过程。

教学环节。

师生活动。

设计意图。

复习引入。

(二)出示不规则图形1。

15米,宽10米,底7米,高21米)求出长方形的面积比平行四边形的面积大,在学生选择清洁区的同时进行思想品德教育。

3、课堂质疑(主要解决学生用平行四边形的底乘以斜边求出面积的问题。)。

结合学生原有认知水平,创设问题情景,把生活问题转化为数学问题,利用矛盾,激发学生的学习兴趣,让学生感受到知识来源于生活,从而产生学习数学的需要。

突破以往的教学思路,不但引导学生转化图形还要让学生明白图形转化的依据,为以后的图形转化起了一个导航的作用。整个过程以学生为主体,培养学生自主探索、合作学习,鼓励他们大胆质疑,开拓和发展学生的创造思维,培养学生发现问题,提出问题,解决问题的能力。同时配合教师的适时点播质疑,把问题引向深入,从而也发挥教师引导者的作用。

公式的推导,建构了学生头脑中新的数学模型:转化图形(依据特征)---建立联系---推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,教师完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。利用所学知识解决了课前矛盾,恰当的进行了思想品德教育,提高了学生学习数学的兴趣。

练习反馈。

1、求下列图形的面积是多少?

底5厘米,高3.5厘米底6厘米,高2厘米。

2、计算下面图形的`面积哪个算式正确?(单位:米)。

83。

4

6

3×83×64×86×83×44×6。

3、图形的面积相等吗?

56平方厘米8厘米。

5、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。

课堂小结:回忆一下今天推导平行四边形面积公式的过程,(转化图形)---(建立联系)---(推导公式)。而转化图形和建立联系这两个环节都利用了图形的特征来进行。

分层习题的设置为不同的学生提供了各自施展的舞台,同时也体现数学知识生活化,开放的山西地形图,不仅拓宽了学生的思路,使数学同学生的课外知识配合,而且培养了学生估算的能力,更建立起了学科之间的联系,进一步培养了学生学习数学的兴趣。

全课总结反思体验。

这节课我们学习了什么?你有哪些收获?

小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

作业。

将本文的word文档下载到电脑,方便收藏和打印。

二年级数学平行四边形教案

2、探索正方体的特征。

3、引出认识五边形和六边形。

1、借助观察、操作,认识长方形和正方形的特征,并能用语言进行描述,能在方格纸上画出长方形和正方形。初步认识五边形和六边形。

2、经历探索长方形和正方形的过程,发展空间想象力和创新意识。

3、在具体情境中,感受欣赏图形美,培养爱护鸟类、保护环境的意识。

同学们,在不知不觉中温暖的春天来了,小鸟也出来了。大家看(课件)。有了良好的环境和温暖舒适的巢穴,小鸟高兴地似乎在唧唧喳喳的叫着。所以,我们要保护环境,还要给小鸟做一个温暖舒适的巢,为小鸟的生活提供一个良好的环境。老师就为小鸟做了几个小巢,我们一起来看这个鸟巢。

(一)长方形。

1、探索长方形的边特征。

(1)你知道这个鸟巢都是用那些图形的纸卡做出来的吗?(长方形的、正方形的)。

(2)是吗?为了让同学们看得更清楚,老师把这个鸟巢每一面的纸卡拆下来,你们好好观察观察。(把鸟巢拆开,把每一个面都贴在黑板上)。

(3)好,先看这个面,他是什么图形的?(长方形的)。

(8)看来,这个特征应该是真的。那么还有用折的方法吗?【我们组使用折一折的方法】【你们组是怎样做的】【我们是先把他们俩对折,他们俩一样长,再把它们俩对折,也是一样长】【嗯,如果像这样,叫这两条边完全重合,那说明这两条边是相等的,而这两条边呢,也是完全重合,就是相等】。

(9)和他们组发现的是一样的特征的举手!看来经过好几个组的验证,这个特征是真的。

(11)刚才我们找到了几组相等的边?【2组】。

(13)真聪明!所以说,长方形边的特征就是【对边相等】板书:对边相等。

2、认识长方形的长和宽。

(1)我们来给这四条边起个名字。来,看这组对边和这组对边,哪一组比较长?

(2)对,这一组较长的对边叫做长方形的长。板书:长这一组较短的对边叫做长方形的宽。

板书:宽。

(3)长方形有几条长?板书:【2条】。几条宽?板书:【2条】。

3、找出长方形的长和宽。

(1)你能指出黑板的长吗?你能指出黑板的宽吗?

(2)你能找到这个长方形的长吗?宽呢?

(3)看来不是横着的这个边就是长。重点要看谁更长!

4、探索长方形角的特征。

(1)长方形有几个角呢?那么长方形的这四个角又会有什么特征呢?【都是直角】。

(2)你是怎么知道的?【看着像】。

(5)这个角呢?这个呢?

6、举反例:看老师手里,这是一个长方形吗?为什么?【因为这两个角不是直角】。

7、看来,只要有一个条件不符合长方形特征的,就不是长方形。

8、现在小结一下刚才的收获:长方形四条边,对边相等;较长的对边叫做长,有2条长;较短的对边叫做宽,有2条宽。四个角都是直角。

(二)、正方形的特征。

1、正方形的边。

(1)我们再来看鸟巢的这个面。他是什么图形呢?【正方形】那我们就来找一找正方形的特征。板书:正方形的特征。

(2)首先,运用刚才量一量、折一折的方法找出正方形边的特征!如果用的是量的就填在量1表格中,如果是折的就填下面折2的那个空里。开始吧!

(4)正方形的四条边一样长。大家都是这么认为的吗?

(5)因为正方形四条边都一样长,所以就不用区分长和宽,4条边的长度都叫做正方形的边长。

(4)正方形四条边长都【相等】。板书:四条边长相等。

2、正方形的角。

(1)正方形的角呢?自己拿出三角尺量一量。

(2)交流:正方形的四个角都是直角。板书:四个角都是直角。

3、总结:正方形的四条边长都相等、四个角都是直角。

(三)、判断题。(有一个需要特别的量一量才能分清除。)。

(四)长方形正方形之间的关系。

1、长方形有四个直角,正方形也有四个直角,那么长方形和正方形有什么关系呢?

2、正方形四条边中这两条相对的边怎样?【边对折演示,边回答对边相等】。

3、这符合长方形的特征吗?【符合】。

4、那我们可以说:正方形也是长方形,但是一个特殊的长方形。不但对边相等,而且更进一步四条边长都相等。就好比说:长方形是爸爸,正方形是孩子,爸爸只有两条相对的边,而孩子比爸爸更棒,四条边都相等。

(五)四边形、五边形、六边形。

2、再看这个鸟巢,它有几条边?那就叫做五边形。

3、看这个鸟巢,叫什么?【六边形】为什么?【因为有6条边】。

(四)课堂练习。

1、猜图形。在我的书里夹着一个图形,他四条边【长方形、正方形】,四个角都是直角【长方形、正方形】,四条边都相等。【正方形】。

(五)课堂小测验。

1、填空:长方形有()条边;较长的边叫做();有()条长;较短的边叫做();有()条宽;长方形()相等。有()个角;都是()角。

2、正方形的角是()直角;四条边()。

3、()是特殊的长方形。

4、在下面的格子图中画出长方形的门和正方形的窗户。

板书:做鸟巢。

数学《平行四边形的面积》教案

师:我们一起回忆一下,已经学过长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)。

师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)。

生活动后汇报如下:

长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米。

(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米。

1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)。

生:(兴奋地)高!

3、师:用什么办法可以比较它们的面积大小呢?

生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

师:变成长方形后,面积大小变了没有?

生:没有。

生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

生:6是长方形的长,也是平行四边形的'底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

根据学生反馈情况进行课件演示,出现几种拼法(略)。

师:这几种剪拼方法有什么相同之处?

生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

生:在剪拼过程中,图形的形状变了,面积不变。

生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。

师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

初中数学平行四边形的判定教案

3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

一、教学重点、难点。

重点:简易方程的解法;

难点:根据实际问题中的数量关系正确地列出方程并求解。

二、重点、难点分析。

解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

三、知识结构。

导入方程的概念解简易方程利用简易方程解应用题。

四、教法建议。

(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

五、列简易方程解应用题。

列简易方程解应用题的一般步骤。

(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.。

(2)找出能够表示应用题全部含义的一个相等关系.。

(3)根据这个相等关系列出需要的代数式,从而列出方程.。

(4)解这个方程,求出未知数的值.。

(5)写出答案(包括单位名称).。

平行四边形教案

人教版义务教育课程标准实验教科书数学五年级上册第五单元《平行四边形的面积》。

2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

掌握平行四边的面积计算公式,并能正确运用。

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

课件、平行四边形纸片、剪刀、直尺、三角板等。

师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)。

一、情境创设,揭示课题。

1、创设故事情境。

2、复习旧知,揭示课题。

(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长宽)。

(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

二、自主探究,操作交流。

1、大胆猜想。

平行四边形教案

备课时间:20xx年9月5日。

上课时间:年月日。

教学内容:教材第12~16页例1和“想想做做”第1~5题。

1、使学生通过观察、比较、分类,认识四边形、五边形、六边形等平面图形,能判断一个由线段围成的图形是几边形,能按要求围出或剪出多边形。

2、使学生经历从实际中抽象出图形,以及观察、实践操作等数学活动,进一步感受分类的思想,积累学习平面图形的初步经验;体会不同图形边数的特点,发展相应的空间观念。

3、使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。

认识四边形、五边形、六边形等平面图形。

能根据要求把一个多边形分成不同的图形或者是数图形的个数。

师生每人准备小棒若干根,钉子板1个,四边形纸片2张,正方形纸片1张,剪刀1把。

一、初步感知。

1.回顾已知图形。

(1)让学生明确第(1)题的要求。

出示两张四边形纸片,让学生想想怎样剪成两个三角形,怎样剪成一个三角形和一个四边形。

学生操作剪图形,教师巡视。

(2)让学生明确第(2)题的要求。

出示正方形纸片,要求学生想想怎样可以剪下一个三角形。

学生操作剪下一个三角形。

展示交流:你是怎样剪的?剩下的部分是什么图形?

6、做“想想做做”第5题。

让学生找一找、数一数,能找到几个就找几个;然后交流自己找到了几个四边形。

四、总结评价。

交流:今天我们又去了图形王国,你有哪些新收获?你是怎样学习这些知识的?

五、布置作业。

《补充习题》第页。

板书设计:

课后笔记:

平行四边形教案

1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质。

2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证。

3.培养学生发现问题、解决问题的能力及逻辑推理能力。

1.重点:平行四边形的定义,平行四边形对角、对边相等的'性质,以及性质的应用。

2.难点:运用平行四边形的性质进行有关的论证和计算。

3.难点的突破方法:

本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质。这一节是全章的重点之一,学好本节可为学好全章打下基础。

学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识。

平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握。

为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚。

讲定义时要强调四边形和两组对边分别平行这两个条件,一个四边形必须具备有两组对边分别平行才是平行四边形;反之,平行四边形,就一定是有两组对边分别平行的一个四边形.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质。

新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质。这有利于培养学生观察、分析、猜想、归纳知识的自学能力。

教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣。

平行四边形教案

《义务教育教科书》人教版数学课本五年级上册87——88页。

平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。

学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。

1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。

2、在探究的过程中感悟“转化”的数学思想和方法。

3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。

4、引领学生回顾反思,获得基本的数学活动经验。

推导平行四边形面积计算公式。应用公式解决实际问题。

理解平行四边形的面积计算公式的推导过程。

讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。

1、联系旧知,做出猜想。

看到这个题目,你想到了我们学过哪些有关面积的知识?

大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?

2、初步验证,感悟方法。

根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。

引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)。

学生数方格并来验证自己的猜想。

3、剪拼转化,发现规律。

除了数方格,我们还能用什么方法来验证呢?(学生思考)。

能否将平行四边形转化成我们学过的图形再来进行计算呢?

(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。

(2)展示交流。(演示)。

4、观察比较,推导公式。

小结:长方形面积=长×宽。

s=a×h。

5、展开想象,再次验证。

是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?

学生先闭眼想象,再借助手中的工具加以验证。

6、回顾反思,总结经验。

回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。

把平行四边形转化成长方形面积。(剪拼—转化)。

然后找到转化前、后图形之间的联系。(寻找—联系)。

根据长方形面积公式推导出平行四边形面积公式。(推导—公式)。

1、解决实际问题。

平行四边形花坛底是6米,高是4米,它的面积是多少?

2、出示如下图。

算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)。

3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)。

王大爷:43×23李大爷43×20,请你判断一下,谁对?谁错?

4、现在你明白阿凡提是怎么打败巴依的了吗?

引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。

转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。

通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。

平行四边形教案

人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

1、通过操作和讨论掌握平行四边形和梯形的特征。

2、通过活动,在对各种四边形分类整理中,了解平行四边形与长方形和正方形的关系。

3、注意培养学生的空间观念和想像力。

通过操作和讨论掌握平行四边形和梯形的特征。

教师准备:直尺,三角板,课件。

学生准备:直尺,三角板,白纸,铅笔。

一、通过观察,加深学生对四边形特点的了解。

1、用课件出示一组(三角形和四边形)平面图形,让学生认识四边形的特点。

(1)(2)(3)。

(4)(5)(6)。

师:请同学们看电脑,上面有6个图形,你知道它们叫什么图形吗?

生:(1)、(4)、(5)是三角形(同学们很熟悉),(2)、(3)(6)是四边形(部分学生回答不出来,原因是对四边形的概念不怎么理解)。

师:你知识三角形和四边形有什么特点吗?

生1:三角形有三条边,三个角。

生2:四边形有四条边,四个角。

师:对,今天我们来学习两种特殊的四边形。

二、通过观察讨论,让学生发现平行四边形和梯形的特点。

1、通过让学生观察讨论,认识平行四边形和长方形的定义。

出示课件:在电脑上出示一组四边形。

(1)(2)(3)。

(4)(5)(6)。

师:电脑上的这组图形都是什么图形?

生:四边形。(有前面的知识作铺垫,学生很容易回答出来)。

师:你能把它们分类吗?

生:能。(引导学生思考问题,从而发现平行四边形和梯形的特征。)。

生1:我觉得图(1)、(3)、(6)可以分为一组,图(2)、(4)、(5)可以分为一组。

师:你能说说把图(1)、(3)、(6)分为一组道理吗?

生1:因为图(1)、(3)、(6)有两组平行线。

师:同学们,这位同学说得有道理吗?用你学过的方法验证图(1)、(3)、(6)这三个图形有两组平行线吗?(通过学生发现、验证、得出结论这三个步聚,使学生探索中发现平行四边形的特点,并复习了平行线的画法。)。

生:确实有两组平行线。

师:回答得好,我们把有两组对边分别平行的四边形叫做平行四边形。(揭示平行四边形的定义,并板书)。

师:谁能说说把图(2)、(4)、(5)分为一组的道理?

生2:它们只有一组平行线。

师:对,我们把只有一组对边平行的四边形叫做梯形。(揭示梯形的定义,并板书)。

2、通过学生讨论,发现长方形和正方形是特殊的平行四边形。

生1:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形应该是斜的。

生2:我觉得长方形和正方形不是平行四边形,因为我觉得平行四边形的四个角大小应该是不一样的。

师:赞成第一位同学的举手,赞成第二位同学的举手,赞成第三位同学的举手。看来赞成第三个同学的人比较多。

师:只要符合有两组对边分别平行的四边形这个条件就是平行四边形。长方形和正方形符合了有两组对边分别平行的四边形这个条件,所以长方形和正方形也是平行四边形,只是它有点特殊吧了。我们把长方形和正方形叫做特殊的平行四边形。

师:你们能说说长方形和正方形特殊的地方吗?

生:它的四个角都是直角。

(通过学生的讨论,使学生认识到长方形和正方形是特殊的平行四边形,同时更进一步理解平行四边形的定义。)。

师:请大家看一看这几个平行四边形,它们还有什么特点,同学们可留意它的边和角。(老师提示,让学生进一步发现平行四边形的特点)。

师:请同学们用尺子量一量。

师:请同学们用量角器量一量。

师:这两位同学的发现正确吗?

生:完全正确。

师:梯形有这些特点吗?请同学们量一量。

生:没有,梯形的对边不相等,对角也不相等。

(通过学生的操作,进一点了解平行四边形和梯形的特点)。

师:下面我们可以用图表表示平行四边形和梯形的特点。

梯形只有一组对边平行不相等不相等。

(用图表表示平行四边形的`特点,使学生更好地理解平行四边形和梯形的区别和联系。)。

三、认识四边形之间的关系。

生:是。

师:我们可以用这个图来表示:

梯形。

四边形。

师:长方形和正方形应怎样表示呢?

生1:应在平行四边形圈内画圈表示,因为它们是特殊的平行四边形。

师:对,应这样表示:

长方形梯形。

正方形。

四边形。

四、巩固练习。

1判断下面那些图形的平行四边形,那些图形的梯形。

(1)(2)(3)。

(4)(5)(6)。

(7)(8)(7)。

(使学生运用平行四边形和梯形的定义,判断那些图形是平行四边形和梯形,那些是梯形。增强学生对定义的理解)。

2填空。

1、两组对边()的四边形叫做平行四边形。

2、()的四边形叫做梯形。

3、长方形和正方形都有两组对边分别()且(),所以它们是特别的()。

4、平行四边形和梯形都是()形,它们都有(),()个角。

(通过练习,使学生更深刻理解平行四边形和梯形的定义和特点)。

五、全课小结。

师:今天你们学到了什么?

生:我们今天学习了平行四边形和梯形,并了解它们的特点。并了解到长方形和正方形是特殊的平行四边形。

平行四边形教案

结合生活情境和实际操作,直观地认识平行四边形。

(一)创设活动情境。

师:同学们,你们喜欢变魔术吗?

(生自由回答。)。

师:现在老师要变魔术给你们看一看。

(教师拿出一个长方形教具,拉动长方形框架对角使其变为另一个图形。向不同的方向拉,这样反复做几次。)。

师:你们想不想试一试?(学生跃跃欲试。)。

(二)探索新知。

1.做一做。

(1)师:同学们,你们可以亲自动手做一做。你在拉动时注意观察拉动后的长方形发生了哪些变化?这个新图形又是什么样的?并把自己的想法与同伴说一说。

(以小组为单位开始活动,教师在小组内随时指导。)。

(通过动手操作,学生不难发现长方形拉动后角不再是直角了或是角的大小变了,但边的长短没有变。)。

(2)以小组汇报方式在全班反馈:新图形与长方形的联系与区别,描述新图形的形状。

(学生语言表达不一定清楚,但只要意思对,教师这时都要给予鼓励。)。

(3)你们知道长方形变化后得到的是什么图形吗?

(学生回答。这时有的学生能结合自己的生活经验说出这是平行四边形,如说不出教师可以直接揭示。)。

(设计意图通过动手操作,让学生根据自己的`活动体验、小组交流自主发现平行四边形与长方形的联系与区别。)。

2.说一说。

(1)师:这样的图形你们在生活中见过吗?在哪儿?

(给学生思考时间,引导学生在小组内说一说。)。

(设计意图让学生先独立思考是为了有较完整的思维,小组交流是让每个学生都能参与进来。)。

(2)小组形式汇报反馈。

当学生语言表达不清时,要在尊重学生的基础上,鼓励他把话说完整。

(设计意图通过真实的生活情境进一步认识平行四边形,让学生感到平行四边形离我们并不远。)。

3.画一画。

(1)师:你们想把刚才在生活中找到的这些平行四边形在点子图中画出来吗?

(2)出示附页3中的点子图。学生动手画一画。

(对有困难的学生,教师要随机指导。)。

(3)展示作品,引导学生参与评价。

(设计意图尊重学生的个性发展,在评价中自我反思。)。

4.拼一拼。

(以游戏的方式进行。)。

(1)师:现在我们来做拼图游戏,用你们手中的七巧板来拼一拼今天我们认识的平行四边形。

(2)生进行拼图游戏,教师巡视指导。

(鼓励学生用多种组合拼出平行四边形。学生拼图过程中可以与同伴随意交流。)。

(设计意图学生经过以上的数学活动,可能已经疲劳了,根据儿童的心理特点,此活动以游戏的方式进行,让学生在轻松、愉快的气氛中拼一拼,进一步直观认识平行四边形。)。

(三)小结本节课内容,布置实践作业。

这节课我们认识了一个新图形――平行四边形,并知道在我们的生活中可以找到它。请你们对生活中物体再进行观察,去找一找我们今天认识的这个新图形。

平行四边形教案

1、能进一步理解掌握矩形、菱形、正方形的性质定理、判定定理。

2、进一步体会证明的必要性以及计算与证明在解决问题中的作用。

(二)能力训练要求。

1、经历探索、猜想、证明的过程,进一步发展推理论证能力。

2、进一步体会证明的.必要性以及计算与证明在解决问题中的作用。

3、体会证明过程中所运用的归纳概括以及转化等数学思想方法。

(三)情感与价值观要求。

1、通过知识的迁移、类比、转化,激发学生探索新知识的积极性和主动性。

2、体会数学与生活的联系。

特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。

特殊四边形——矩形、菱形、正方形的性质定理和判定定理的灵活应用。

启问——交流式教学法。

1、巧设现实情境,引入新课。

[师]通过前几节内容的学习,我们进一步理解了平行四边形及特殊平行四边形的性质定理和判定定理。

这节课我们来应用它们证明和计算一些题。

2、讲授新课。

[师]下面大家来猜一猜,想一想。

依次连接任意四边形各边的中点可以得到一个平行四边形。那么,依次连接正方形各边的中点。(如图)能得到—个怎样的图形呢?先猜一猜,再证明。

相关范文推荐

猜您喜欢
热门推荐