纳米材料课程论文(精选15篇)

时间:2023-11-30 10:43:10 作者:灵魂曲

通过研读范文范本,我们可以更好地理解写作的要求和标准。以下是一些经典的范文范本,通过阅读它们,我们可以拓宽我们的写作思路和技巧。

纳米材料论文完整

于琳枫(12化学1班)。

摘要:二氧化钛纳米管由于新奇的物理化学性质引起了广泛的关注,本文就近年来在制备方法﹑反应机理﹑二级结构及掺杂和应用方面予以综述,并讨论了今后可能的研究发展方向。

关键词:二氧化钛,纳米管,制备,反应机理,二级结构。

0引言。

tio2俗称钛白粉,无毒、无味、无刺激性、热稳定性好,且原料来源广泛易得。它有三种晶型:板钛矿、锐钛矿和金红石型。tio2最早用来做涂料。

1.1气相法。

包括:直流电溅射法、高频无线电溅射法、分子束取向生长法和等离子体法等。

1.2液相法。

目前制备tio2纳米材料应用最广泛的方法是各种前驱体的液相合成法。这种方法的优点是:原料来源广泛、成本较低、设备简单、便于大规模生产。但是产品粒子的均匀性差,在干燥和煅烧过程中易发生团聚。应用最普遍的液相制备方法包括液相沉积法和微乳液法等。

1.2.1液相沉积法。

液相沉积法是以无机钛盐作原料,通过直接沉积来制备功能tio2粉体和薄膜的液相法。deki等用(nh4)2tif6和h3bo3的水溶液为起始溶液,制备了tio2薄膜。imai等用添加了尿素的tif4和ti(so4)2的水溶液制备了不同形貌的tio2纳米材料。液相沉积法具有以下优点:对仪器要求比较低,温度要求低(30~50℃),基片选择比较广等。

1.2.2微乳液法。

2.1氧化钛纳米管形成的反应机理。

尚不确定。理论上钛纳米带折叠或卷曲形成纳米管时,可形成下列3种形状:(a)蛇形的,即单层纳米管的卷曲;(b)洋葱式的,即几个有弱相互作用的纳米片的卷曲;(c)同心式的,通过卷曲或者折叠成多层的纳米管。但实际上,(c)种形状在合成时很难出现。yao和ma通过tem研究分别证实了(a)和(b)构型钛纳米管的存在。

梁建等则认为钛纳米管的生长机理符合3-2-1d的生长模型,在水热合成的过程中,在高压高温和强碱作用下,二氧化钛块体沿着(110)晶面被剥落成碎片,在片的两面有不饱和悬挂键,随着反应的进行,不饱和悬挂键增多,使薄片的表面活性增强,开始卷曲成管状,以减少体系的能量,这一点从反应中间产物中观察到大量的片状及卷曲态得的到证明。dimitryv.bavykin[19]等系统地研究了合成温度以及tio2/naohmol比对制备二氧化钛纳米管形貌的影响。认为图3-b符合氧化钛纳米管的形成机理,并给出了形成机理的原始驱动力的解释。dimitryv.bavykin等进行了氧化钛纳米管形成的热力学和动力学研究。该模型见图4能够很好的解释实验中增加tio2/naoh的摩尔比,氧化钛纳米管的平均管径也增大。同时也可以解释反应温度增加有利于纳米管的平均管径增大。

2.2纳米管的热稳定性及氧化钛纳米管的晶型。

由于二氧化钛纳米管为无定形结构,在热力学上,属于介稳态。因此研究温度对其热稳定性的影响颇有必要。王保玉等以tio2为原料制备成tio2纳米管,通过不同温度焙烧得到不同的样品,用tem,xrd,ft-ir,bet等手段详细的研究了温度对晶型,比表面积的影响。研究表明,在300℃和400℃焙烧存在着两次比表面积的突降,用化学法合成的纳米管在400℃时,比表面积降到很小,管的结构严重被破坏。用化学法合成的纳米管是无定形的,而模板法制备的纳米管为锐钛矿型的。这可能是因为化学法制备的纳米管为多层,层与层之间不能形成三维空间的点阵结构。而王芹等研究则发现钛纳米管经过400℃热处理后能保持其纳米管的形貌,600℃有纳米管间烧结的现象,800℃时管的形状完全被破坏。可见合成方法的不同,氧化钛纳米管的热稳定性也有很大的差异。

纳米材料课程心得体会

近年来,随着科技的迅猛发展,纳米材料作为具有巨大潜力的新兴材料,引起了广泛的关注。为了进一步加强对纳米材料的了解,我参加了学校组织的纳米材料课程。在这门课程中,我不仅学到了纳米材料的基本知识,也深刻体会到了纳米材料的应用前景以及研发过程中的挑战。下面我将通过五个方面来分享我的纳米材料课程心得体会。

首先,我学到了纳米材料的基础知识。在课程中,老师详细讲解了纳米材料的定义、特性以及制备方法等基础知识。通过理论学习和实验操作,我对纳米材料的结构、性质和应用有了更深入的了解。特别是在实验中,我亲自参与制备纳米材料的过程,深刻体会到了纳米尺度下的独特性质和制备方法的复杂性。这些基础知识为我进一步研究和探索纳米材料打下了坚实的基础。

其次,我认识到纳米材料的广泛应用前景。在纳米材料课程中,我了解到纳米材料在各个领域的应用。例如,在医药领域,纳米材料可以用于药物传递和诊断;在能源领域,纳米材料可以用于太阳能电池和储能设备等;在环境领域,纳米材料可以用于污染物的检测和治理。这些应用前景让我对纳米材料的研究充满了信心和动力,也让我意识到纳米材料研究对社会发展的重要性。

第三,我了解到纳米材料研发面临的挑战。纳米材料的研发具有较高的技术含量和复杂性,因此面临着许多挑战。首先是制备方法的难度,纳米材料的制备需要精确的控制和调节,对实验条件和设备要求较高。其次是纳米材料的安全性和环境影响问题,纳米材料的应用需要对其安全性进行评价和控制,以免造成无法预料的后果。此外,纳米材料的商业化和产业化也面临着市场竞争和技术壁垒等挑战。了解到这些挑战,让我对纳米材料研发的实际操作和应用有了更深入的认识。

第四,我学到了团队合作和沟通能力。在纳米材料课程中,老师组织了许多实验和小组讨论,要求我们进行团队合作和交流。通过与同学们的合作,我学会了分工合作、互相学习和沟通协调。每次实验,我们都需要互相帮助、共同解决问题,这充分锻炼了我们的团队合作和沟通能力。这些能力对于将来从事科研工作和工程实践都非常重要,也是我在纳米材料课程中的一大收获。

最后,纳米材料课程激发了我对纳米材料研究的热情。通过课程的学习和实践,我对纳米材料的独特性质和应用前景有了更深入的认识和了解,也对纳米材料的研究和应用充满了热情。我意识到,通过不断的学习和实践,我有机会为纳米材料的研究和应用做出自己的贡献,为社会的发展做出一份努力。

综上所述,纳米材料课程带给我了许多知识和体会。我不仅学到了纳米材料的基础知识,也认识到了纳米材料的应用前景和研发挑战。同时,通过课程的实验和讨论,我培养了团队合作和沟通能力。课程还激发了我对纳米材料研究的热情,让我对自己将来的发展充满了信心和动力。通过这门课程的学习,我相信我能在纳米材料领域取得更多的成就。

纳米材料课程论文

于琳枫(12化学1班)。

摘要:二氧化钛纳米管由于新奇的物理化学性质引起了广泛的关注,本文就近年来在制备方法﹑反应机理﹑二级结构及掺杂和应用方面予以综述,并讨论了今后可能的研究发展方向。

关键词:二氧化钛,纳米管,制备,反应机理,二级结构。

0引言。

tio2俗称钛白粉,无毒、无味、无刺激性、热稳定性好,且原料来源广泛易得。它有三种晶型:板钛矿、锐钛矿和金红石型。tio2最早用来做涂料。

1.1气相法。

包括:直流电溅射法、高频无线电溅射法、分子束取向生长法和等离子体法等。

1.2液相法。

目前制备tio2纳米材料应用最广泛的方法是各种前驱体的液相合成法。这种方法的优点是:原料来源广泛、成本较低、设备简单、便于大规模生产。但是产品粒子的均匀性差,在干燥和煅烧过程中易发生团聚。应用最普遍的液相制备方法包括液相沉积法和微乳液法等。

1.2.1液相沉积法。

液相沉积法是以无机钛盐作原料,通过直接沉积来制备功能tio2粉体和薄膜的液相法。deki等用(nh4)2tif6和h3bo3的水溶液为起始溶液,制备了tio2薄膜。imai等用添加了尿素的tif4和ti(so4)2的水溶液制备了不同形貌的tio2纳米材料。液相沉积法具有以下优点:对仪器要求比较低,温度要求低(30~50℃),基片选择比较广等。

1.2.2微乳液法。

2.1氧化钛纳米管形成的反应机理。

尚不确定。理论上钛纳米带折叠或卷曲形成纳米管时,可形成下列3种形状:(a)蛇形的,即单层纳米管的卷曲;(b)洋葱式的,即几个有弱相互作用的纳米片的卷曲;(c)同心式的,通过卷曲或者折叠成多层的纳米管。但实际上,(c)种形状在合成时很难出现。yao和ma通过tem研究分别证实了(a)和(b)构型钛纳米管的存在。

梁建等则认为钛纳米管的生长机理符合3-2-1d的生长模型,在水热合成的过程中,在高压高温和强碱作用下,二氧化钛块体沿着(110)晶面被剥落成碎片,在片的两面有不饱和悬挂键,随着反应的进行,不饱和悬挂键增多,使薄片的表面活性增强,开始卷曲成管状,以减少体系的能量,这一点从反应中间产物中观察到大量的片状及卷曲态得的到证明。dimitryv.bavykin[19]等系统地研究了合成温度以及tio2/naohmol比对制备二氧化钛纳米管形貌的影响。认为图3-b符合氧化钛纳米管的形成机理,并给出了形成机理的原始驱动力的解释。dimitryv.bavykin等进行了氧化钛纳米管形成的热力学和动力学研究。该模型见图4能够很好的解释实验中增加tio2/naoh的摩尔比,氧化钛纳米管的平均管径也增大。同时也可以解释反应温度增加有利于纳米管的平均管径增大。

2.2纳米管的热稳定性及氧化钛纳米管的晶型。

由于二氧化钛纳米管为无定形结构,在热力学上,属于介稳态。因此研究温度对其热稳定性的影响颇有必要。王保玉等以tio2为原料制备成tio2纳米管,通过不同温度焙烧得到不同的样品,用tem,xrd,ft-ir,bet等手段详细的研究了温度对晶型,比表面积的影响。研究表明,在300℃和400℃焙烧存在着两次比表面积的突降,用化学法合成的纳米管在400℃时,比表面积降到很小,管的结构严重被破坏。用化学法合成的纳米管是无定形的,而模板法制备的纳米管为锐钛矿型的。这可能是因为化学法制备的纳米管为多层,层与层之间不能形成三维空间的点阵结构。而王芹等研究则发现钛纳米管经过400℃热处理后能保持其纳米管的形貌,600℃有纳米管间烧结的现象,800℃时管的形状完全被破坏。可见合成方法的不同,氧化钛纳米管的热稳定性也有很大的差异。

tio2纳米材料的很多应用都是和其光学性质紧密相连的。但是,tio2的带隙在一定程度上限制了tio2纳米材料的效率。金红石型tio2的带隙是3.0ev,锐钛矿型是3.2ev,只能吸收紫外光,而紫外光在太阳光中只占很小的一部分(10%)。因而,改善tio2纳米材料性能的一个目的就是将其光响应范围从紫外光区拓展到可见光区,从而增加光活性。目前经常采用的改性方法包括贵金属沉积、离子掺杂、染料敏化和半导体复合等方法。

5.1贵金属沉积。

tio2光催化活性的影响,发现fe、mo、ru、os、re、v和rh离子掺杂可以把tio2的光响应拓宽到可见光范围,其中fe离子掺杂效果最好,而掺杂co和al会降低其光催化活性。wu等定性分析了过渡金属(cr、mn、fe、co、ni和cu)离子掺杂对tio2的光催化活性的影响。xu等比较了不同稀有金属(la、ce、er、pr、gd、nd和sm)离子掺杂对tio2光催化活性的影响。

阴离子掺杂可以改善tio2在可见光下的光催化活性、光化学活性和光电化学活性。在tio2晶体中掺杂阴离子(n、f、c、s等)可以将光响应移动到可见光范围。不像金属阳离子,阴离子不大可能成为电子和空穴的再结合中心,因而能够更有效地加强光催化剂的催化活性。asahi等测定了取代锐钛矿tio2中o的c、n、f、p和s的掺杂比例。发现p态n和2p态o的混合能使价带边缘向上移动从而使得tio2带隙变窄。尽管s掺杂同样能使tio2带隙变窄,但是由于s离子半径太大很难进入tio2晶格。研究表明c和p掺杂由于掺杂太深不利于光生电荷载体传递到催化剂表面,所以对光催化活性的影响不是很有效。ihara等将硫酸钛和氨水的水解产物在400℃的干燥空气中煅烧,得到了可见光激发的n掺杂tio2光催化剂。

5.3染料敏化。

有机染料被广泛地用作tio2的光敏化剂来改善其光学性质。有机染料通常是具有低激发态的过渡金属化合物,像吡啶化合物、苯二甲蓝和金属卟啉等。yang等用联吡啶、carp等用苯二甲蓝染料作为感光剂敏化tio2,发现这些染料可以改善光生电子空穴对的电荷分离,从而改善了催化剂的可见光吸收。

5.4半导体复合。

针对tio2纳米材料的性质、合成、改性和应用,人们已经做了广泛的研究。随着tio2纳米材料的合成和改性方面的突破,其性能得到不断地改善,新应用也不断的被发现。但从目前的研究成果看,可见光催化或分解水效率还普遍很低。因此如何通过对纳米tio2的改性,有效地利用太阳光中的可见光部分,降低tio2光生电子空穴对的复合机率,提高其量子效率是今后的研究重点。

参考文献。

[3]王芹,陶杰,翁履谦等,氧化钛纳米管的合成机理与表征,材料开发与应用,19:9-12,2004。

[4]张青红,高濂,郑珊等,制备均一形貌的长二氧化钛纳米管,化学学报,60(8):1439-1444,2002.[4]赖跃坤,孙岚,左娟等,氧化钛纳米管阵列制备及形成机理,物理化学学报,20(9):1063-1066,2004.

[7]洪樟连。唐培松。周时凤。樊先平。王智宇。钱国栋。王民权水热法制备纳米tio2的可见光波段光催化活性的溶剂效应[期刊论文]-稀有金属材料与工程2004(z1)[8]张景臣纳米二氧化钛光催化剂[期刊论文]-合成技术及应用2003(3)[9]蔡登科。张博。孟凡纳米tio2在有机废水处理方面的研究进展[期刊论文]-电力环境保护2003(3)60.陈琦丽。唐超群。肖循。丁时锋二氧化钛纳米晶的制备及光催化活性研究[期刊论文]-材料科学与工程学报2003(4)[10]江红。戴春爱纳米tio2光催化降解技术在污水处理方面的研究进展[期刊论文]-北方交通大学学报2003(6)。

纳米材料论文

伴随着科学技术的发展,功能化纳米材料的应用成为了顺应时代的发展的必然趋势。在对相关技术项目进行全面分析的过程中,要对其原理进行生物分子检测,有效结合组织工程学分析相关研究效果。对无机纳米材料表面化学分析进行阐释,并集中讨论了纳米材料表面化学在生物分析中的应用。

纳米材料;表面化学;生物分析;应用;

纳米材料形成后,表现会完全呈现出无机界面,并且能有效包裹在表面活性剂中,其本身并不具备生物动能,且不能直接应用在细胞或者是生物活体上。基于此,相关操作人员要对其进行表面化学的改性处理和修饰,保证纳米材料生物功能得以发挥。并且,在纳米材料表面化学研究体系内,主要是对生物相容性、生物稳定性以及生物分散性等进行集中传递,保证纳米颗粒研究效果更加直观[1]。

1)表面物理化学性质出现变动,多数无机纳米材料都是非极性物质,基本的沸点较高,要求在高温环境中形成,表面都会出现油胺、油酸以及三辛基氧膦等物质,能溶于非极性溶剂中。在对生物应用进行分析的过程中,纳米材料溶解在水相中,具备非常好的分散性以及稳定性,为了其能发挥实际价值,就要对溶解性等数据等予以综合处理,整合表面改性。目前,较为有效地表面改性处理机制就是替代法,能和无机材料亲和力更好的分子进行处理,完善替代性处理效果。

2)进行靶向修饰操作,主要是借助靶向功能分子完成基础的处理工作,利用识别靶细胞的过程有效对受体进行识别处理,将定位体系确定在目标组织中,并且有效发挥相关物质的治疗和诊断功能。

3)生物传感和检测。因为纳米材料本身具备光信号、电信号的传递能力,因此,在生物电子和生物传感器设计工作中,要发挥纳米材料的生物相容性特征,规避生物识别能力较差的弱项,合理性完善纳米材料生物功能水平。并且,进行生物传感处理后就能提升生物分子和组织细胞的固定能够效果,也能借助生物高特异性判定相关数据,构建更加有效的生物传感系统。

2.1细胞分析。

伴随着科学技术的发展,将技术应用在生物体系中,主要利用的就是生物传感机制。目前,生物体传感项目主要分为细胞结构、活体结构等,相较于传统的研究项目和分子结构探针元素,纳米材料能有效提升影像信号的强度,并且整体细胞结构的靶向性能更加突出,能为代谢动力学可控效果优化奠定基础。例如,正电子发射断层成像技术、电子计算机技术以及核磁共振技术等都是较为常见的技术项目[2]。

(1)将纳米探针应用在细胞环境中。细胞微环境中,主要的影响因素不仅包括ph数值和细胞因子,也包括氧化还原环境等,温度和离子浓度也会对其产生影响。目前,主要的研究方向就是对早期淋巴祖细胞进行环境分析和系统化数据处理。相关部门在对这项技术进行深度研究和探讨,旨在为干细胞移植工作和化疗治疗提供更加有效的技术体系。例如,在高ph环境中,多巴胺分子处于不稳定的状态,就会发生氧化还原反应,形成多巴醌,这种物质本身具有较强的还原势,在对其进行量子点电子激态处理的过程中,能形成转移就会对辐射跃迁造成影响,造成荧光动态淬灭。

(2)将纳米探针应用在酶活性测定项目中,尤其是酶催化反应过程。因为在肿瘤组织中,酶本身就会出现变动,利用水解细胞结构间质的方式,癌细胞就会从原发部位直接脱落,借助血液循环实现癌症的转移,正是对其异常问题进行分析后不难发现,有效借助那么纳米探针对酶结构异常表达进行测定对医疗项目研究具有重要意义和价值。

2.2癌症诊疗。

化疗治疗过程在医学研究中具有重要意义和价值,在临床化疗中主要应用的是阿霉素以及紫杉醇等药物,药物依旧存在靶向性不好的问题。目前,较为有效的靶向性处理机制中,主要是借助主动靶向完成纳米药物的运输,并且对肿瘤成像以及治疗过程进行约束和管理。基于此,合理性将纳米材料表面化学应用在癌症治疗中,能对包裹和吸附过程进行控制,并且有效达到缓释的效果,减少副作用对人体的伤害。在纳米技术不断发展的背景下,二氧化硅、贵金属以及氧化铁纳米颗粒等物质的应用范围更加广泛,能有效完成靶向处理以及药物释放过程的可控性,从根本上推进了诊疗一体化以及药代动力学体系的融合,也为诊疗水平和效果的优化奠定了坚实基础[3]。

总而言之,在对纳米材料表面化学在生物分析中应用进行研究的过程中,要结合科学技术的发展现状,并且有效结合临床诊疗效果,完善材料分析的同时,对靶向性等因素予以集中分析,促进生物分析和药物治疗水平的全面进步。

[2]张薇。土建工程施工进度的控制与管理策略[j].建筑工程技术与设计,2017,(33):1765.

[3]黄泽宏。浅谈土建工程施工进度的控制与管理策略[j].商情,2014,(12):251.

纳米材料论文

纳米技术作为一门新兴的技术,在多个领域具有非常重要的应用,尤其是极大地推动了新型建材的发展,介绍了纳米技术在新型建筑涂料、复合水泥、自洁玻璃、陶瓷、防护材料等方面的应用,通过论述可知,纳米材料在新型建材领域具有很好的发展应用前景。

纳米技术;新型建材;应用;前景。

通常传统的涂料都存在悬浮稳定性差,耐老化、耐洗刷性差,光洁度不够等缺陷。而纳米涂料则能较好的解决这一问题,纳米涂料具有下述优越的性能:

(1)具有很好的伸缩性,能够弥盖墙体细小裂缝,具有对微裂缝的自修复作用。

(2)具有很好的防水性,抗异物粘附、沾污性能,抗碱、耐冲刷性。

(3)具有除臭、杀菌、防尘以及隔热保温性能。

(4)纳米涂料的色泽鲜艳柔和,手感柔和,漆膜平整,改善建筑的外观等。

虽然国内外对纳米涂料的研究还处在初步阶段,但是已在工程上得到了较广泛的应用,如北京纳美公司生产的纳米系列涂料已大量应用于北京建欣苑、建东苑等住宅区的外墙粉刷,效果良好。在首体改造工程中,使用纳米涂料1700吨,涂刷6万平方米。复旦大学教育部先进涂料工程研究中心的专家已研发出了“透明隔热玻璃涂料”。

普通水泥混凝土因其刚性较大而柔性较小,同时其自身也存在一些固有的缺陷,使其在使用过程中不可避免地产生开裂并破坏。为了解决这一问题就必须加速对具有特殊性能混凝土的研发,而纳米混凝土就能有效的解决这样问题,纳米混凝土,与普通混凝土相比,纳米混凝土的强度、硬度、抗老化性、耐久性等性能均有显著提高,同时还具有防水、吸声、吸收电磁波等性能,因而可用于一些特殊的建筑设施中(如国防设施)。通常在普通混凝土中加入纳米矿粉(纳米级sio2、纳米级caco3)或者纳米金属粉末已达到纳米混凝土的性能,而且通过改变纳米材料的掺量还能配置出防水砂浆等。目前开发研制的纳米水泥材料包括纳米防水复合水泥,纳米敏感水泥、纳米环保复合水泥以及纳米隐身复合水泥。

纳米防水水泥是通过在水泥中添加xpm水泥外加剂的纳米材料而制成的,该纳米外加剂掺入水泥后,可以加快水泥诱导期和加速期的水化反应,改善水泥凝固的三维结构,同时提高水泥石的密实度,增强了防水性能。

纳米敏感水泥是在水泥中加入对周围环境变化十分敏感的纳米材料,从而达到改善水泥制品温敏、湿敏、气敏、力敏等性能。根据添加的敏感材料的不同可将纳米敏感水泥用于化工厂的建设、高速路面的铺设等。

纳米环保复合水泥是利用纳米材料的光催化功能,从而使水泥制品具有杀菌、除臭以及表面自清洁等功能。通常是选用tio2作为纳米添加剂。

纳米隐身复合材料是通过使用具有吸收电磁波功能的纳米材料(纳米金属粉居多),在电磁波照射时,纳米材料的表面效应使得原子与电子运动加剧,促使电子能转化为热能,加强对电磁波的吸收,从何使材料能够在很宽的频带范围内避开雷达、红外光的侦查,这一材料常用于军事国防建筑等。

普通玻璃在使用过程中会吸附空气中的有机物,形成难以清洗的有机污垢,同时,水在玻璃上易形成水雾,影响可见度和反光度。而通过在平板玻璃的两面镀制一层tio2纳米薄膜形成的纳米玻璃,则能有效的解决上述缺陷,同时tio2光催化剂在阳光作用下,可以分解甲醛、氨气等有害气体。此外纳米玻璃具有非常好的透光性以及机构强度。将这种玻璃用作屏幕玻璃、大厦玻璃、住宅玻璃等可免去麻烦的人工清洗过程。

陶瓷因其具有较好的耐高温以及抗腐蚀性以及良好的外观性能而在工程界得到了广泛的应用(如铺贴墙面的瓷砖),但是陶瓷易发生脆性破坏,因而在使用过程中也受到了一定的限制。使用纳米材料开发研制的纳米陶瓷则具有良好的塑性性能,能够吸收一定量的外来能量。在陶瓷基中加入纳米级的金属碳化物纤维可以大大提高陶瓷的强度,同时具有良好的抗烧蚀性,火箭喷气口的耐高温材料就选用纳米金属陶瓷作为耐高温材料。用纳米sic、si3n、zno、sio2、tio2、a12o3等制成的陶瓷材料具有高硬度、高韧性、高强度、耐磨性、低温超塑性、抗冷热疲劳等性能优点。纳米陶瓷将作为防腐、耐热、耐磨的新材料在更大的范围内改变材料的力学性质,具有非常广阔的应用前景。

通常是在胶料中加入炭黑等以提高材料的防水性能,但这种材料的耐腐蚀性以及耐侯性较差,易老化,研制具有高强、耐腐蚀、抗老化性能的防水材料也是工程界一直在积极研究的问题,纳米防水材料能够很好满足上述要求,北京建筑科学研究院就成功的研制了具有较好耐老化性能的纳米防水卷材,该类防水卷材具有很好的强度、韧性、抗老化性以及光稳定性、热稳定性等。纳米防水卷材具有叫广泛的应用前景,如建筑顶面、地下室、卫生间、水利堤坝以及防潜工程等。

随着我国推行节能减排的方针,工程界也越来越注重建筑的保温节能性能,我国目前使用的比较多的仍是聚氨酯、石棉等传统隔热保温材料,这些材料在使用过程中容易产生一些对人体有害的物质,如石棉与纤维制品含有致癌物质,聚氨酯泡沫燃烧后释放有毒气体,而通过使用纳米材料开发研制的保温材料则能避免这些弊端,如以无机硅酸盐为基料,经高温高压纳米功能材料改性而成的保温材料不仅具有很好的保温效果,同时对人体也无损害,是一种绿色环保保温材料。

对于一些在深海中作业的结构以及其他特殊环境下工作的构件,它们对结构的密封性的要求非常高,已超过了普通粘合剂和密封剂所能满足的范围。国外通过在普通粘合剂和密封胶中添加纳米sio2等添加剂,使粘合剂的粘结效果和密封胶的密封性能都大大提高。其工作机理是在纳米sio2的表面包覆一层有机材料,使之具有永久性,将它添加到密封胶中很快形成一种硅石结构,即纳米sio2形成网络结构的胶体流动,提高粘接效果,由于颗粒尺寸小,更增加了胶的密封性。大型建材机械等主机工作时的噪声达到上百分贝,用纳米材料制成的润滑剂,既能在物体表面形成半永久性的固态膜,产生根好的润滑作用,大大降低噪声,又能延长装备使用寿命,具有非常好的应用前景。

纳米技术作为一门新兴的学科,被誉为二十一世纪最具有发展前景的技术,是对未来经济和社会发展产生重大影响的一种关键性前沿技术。纳米技术在建筑材料方面的应用前景非常广阔,纳米技术不仅会推动建材新产品的开发,还将为改善人们的生活环境,提高生活质量做出不可估量的贡献。纳米功能材料已成为国内外研究的热点,目前研究开发工作正处于刚刚起步阶段,还有很多问题还未很好的'解决,需要将进一步加速对纳米材料的研究以及推广应用。纳米材料将成为21世纪新型建筑材料的发展新方向,相信在不久的将来,我们将跨入一个全新的材料时代—纳米材料时代。

[1]@张立德。纳米材料[m].北京:化工出版社,2002.

[5]@唐辉宇,陈丽娟。纳米技术与环保建材[j].四川建材,2005,(1):6-8.

纳米材料课程心得体会

纳米材料是一种具有特殊性质和功能的材料,在当代科技领域具有广泛的应用前景。为了深入了解和掌握纳米材料的基本知识和研究方法,我选择了参加纳米材料课程。通过学习纳米材料课程,我收获颇丰,不仅对纳米材料的特性和制备方法有了更深入的了解,也对其在科技发展和行业应用中的前景有了更全面的认识。

首先,纳米材料课程教授了纳米材料的基本概念和特性。我们了解到,纳米材料具有与其宏观材料相比截然不同的特点。纳米材料的尺寸在纳米尺度下,表现出了独特的量子效应和表面效应。这些特性使得纳米材料具有独特的力学、光学、电学和热学性质,与宏观材料相比,展现出了独特的表现和性能。通过学习这些基本概念,我对纳米材料本身的特性有了更深入的理解,从而为深入学习研究纳米材料奠定了坚实的基础。

其次,纳米材料课程授课老师详细介绍了纳米材料的制备方法。我们了解到,纳米材料制备涉及到多种方法,包括物理法、化学法、生物法等。这些方法分别适用于不同类型的纳米材料的制备。例如,溶液法适用于制备纳米颗粒;气相法适用于制备纳米薄膜;溶胶-凝胶法适用于制备纳米多孔材料等。通过学习这些制备方法,我了解到纳米材料的制备并非一蹴而就,需要根据目标材料的特性和应用需求选择合适的方法,同时需要注意制备过程中的各种参数和条件,确保纳米材料的制备质量。

第三,纳米材料课程还介绍了纳米材料的性能表征方法。纳米材料的特殊性质使得传统的性能测试方法难以适应其表征需求。因此,我们需要了解不同的表征方法,如透射电子显微镜(TEM)、场发射扫描电子显微镜(FESEM)、原子力显微镜(AFM)等。这些表征方法可以帮助我们观察和分析纳米材料的形貌、晶体结构以及各种性能指标。通过学习这些性能表征方法,我更加全面地了解了纳米材料的各项性能,并了解了如何选择合适的表征方法进行研究。

第四,纳米材料课程重点介绍了纳米材料在科技发展和行业应用中的前景。纳米材料具有独特的性能和特性,使得其在多个领域具有广泛的应用前景。例如,在材料科学和工程领域,纳米材料可应用于高性能材料、传感器、催化剂等。在能源领域,纳米材料可应用于电池、太阳能电池、燃料电池等。在医学领域,纳米材料可用于药物传递、诊断和治疗等方面。通过深入了解纳米材料在不同领域的应用前景,我认识到纳米材料科学的重要性和其对科技发展的巨大贡献。

最后,纳米材料课程要求学生完成一个纳米材料研究项目。通过这个项目,我有机会更深入地了解和应用所学的知识。我选择了研究纳米材料在能源存储方面的应用。通过实验,我掌握了纳米材料的制备和性能表征技术,成功合成了一种纳米材料,并测试了其电化学性能。这个项目不仅是学习中的巩固和拓展,同时也培养了我的科研能力和创新能力。

总之,纳米材料课程帮助我深入了解和掌握了纳米材料的基本概念、制备方法、性能表征和应用前景。通过学习这门课程,我触摸到了纳米科技的前沿,并在实际项目中应用了所学的知识。这次学习经历不仅拓宽了我的学术视野,也为我未来的科学研究和职业发展奠定了坚实的基础。我对纳米材料这一领域的未来充满了期待,并希望能够做出自己的贡献。

纳米材料论文

本文主要研究了污染物的光催化降解原理,进一步分析了光催化纳米材料在环境保护工作中的应用,同时对于光催化纳米材料的应用趋势和方向也进行了必要的研究,希望对这一工作的开展提供一定的指导作用。

工业废水和废气中都含有较多的毒害物质,比如有机磷农药或是二氯乙烯等,这些物质对于人体的影响都是十分明显的。传统的水处理方式,比如吸附法、混凝法等方法在现阶段实际应用环节中仍然存在较大的困难,效果并不理想,所以在今后的实际发展过程中就需要不断探索和获取一种经济、合理的方式,实现对传统方法处理后水中的残留物质进行更有效的降解。1976年,科学家在对紫外线光照射下对纳米tio2进行了研究,发现这种方式可以将难以降解的有机化合物多氯联苯脱氯进行有效降解。当前,已经发现超过3000余种难降解的有机化合物都可以借助此种方式进行降解,尤其是水中有机污染物浓度较低或是其他降解方式不佳的时候,这项技术更是能发挥出前所未有的技术优势。

光催化的纳米材料采用的绝大多数都是金属氧化物或是硫化物等半导体材料,是一种特殊的电子结构。和金属相比,这种半导体存在明显的不连续性,在对电子的低能价带进行填满的过程中会和空的高能导带存在明轩的禁带,所以当二者产生的能量大于光照射的时候,在价带上的电子就会被转移到导带上,最终在半导体表面形成具备高活性的电子[1]。

在光催化反应中,获取光激发所出现的空穴,和对给体或是受体产生的作用也是有效的。所以在实际工作中为了确保光催化反应能更有效的进行,就应该适当降低电子和空穴之间的简单复合。

(一)光催化纳米技术在污水处理中的应用。

传统的水处理方式中可以对污水中出现的悬浮物质或是泥沙等大颗粒的污染物进行去除,但是对于浓度较低的可溶性物质却很难进行有效的处理,并且由于这项工作的工作效率比较低,花费的经济成本比较高,所以很多时候并不能进行有效的处理。但是借助纳米材料的光催化方法,就可以将很多难以降解而定污染物进行合理转变,从而将原本水中的污染物转化为水分子或是二氧化碳等无污染的分子物质。

比如在对有机废水的处理环节中,光催化纳米材料就可以将水中的绝大多数有机污染物进行转化,使其成为无污染的物质,比如可以将酸。表面活性剂等有机污染物进行氧化,使其转变为水或二氧化碳等无害的物质。借助纳米材料可以的对物质表面性能进行转变,通过这种方式对水中纳米的分散性进行优化。从而实现对光激发作用下产生的电子和空穴复合问题进行抑制,进一步实现对催化活性的提升[2]。

再比如对无机废水的处理环节中,由于无机物在纳米粒子表面存在明显的光化学活性,因此光催化纳米材料后所出现的电子和空穴都可以对高氧化状态的物质进行还原,也就是借助此种方式实现对无机物污染的有效消除。

(二)光催化纳米技术在大气污染治理中的应用。

对大气污染产生影响的主要成分就是二氧化硫、一氧化碳等物质,这些气体如果长期存在于空气中必然会对人体的健康造成不利的影响。光催化剂可以和一些气体吸附剂进行有效结合,从而更有效的实现对降解浓度的有效降低。

将一些对日光有相应的半导体纳米材料涂抹在墙壁或是其他合理的位置上可以形成空气清洁剂的作用,而二氧化硫、一氧化碳等物质吸附在上面的时候,就可以在光的作用下被转变为无害物质,这种方式对于去除臭气的影响也是十分重要的环节[3]。纳米对于氟利昂具备较强的光催化活性,因此将这以技术进行融合后,可以在表面对酸性进行催化,通过这种方式获取较高的光催化活性作用,这对于物质稳定性的提升也将起到一定的帮助作用。

此外,纳米技术还能对室外的气象有机污染物进行分解,比如在紫外线的照射下,纳米材料可以将室内装饰建材中产生的甲醛、氯乙烯等物质进行有效分解。将活性炭纤维作为重要载体的过渡金属离子中适当进行纳米材料光催化剂的融合,通过此种方式将紫外线光照射下浓度更低的甲醛进行或降解,但是这种技术手段对于浓度高的污染物降解效果比较差,同时由于使用时间的增加,最终催化剂的活性也将大大降低,最终甚至会出现活性的完全消失。

综上所述,光催化纳米材料在当前环境保护中有着越来越显着的应用,不仅可以对难处理的污染物进行有效处理,同时还能借助自身的吸附作用对低浓度的有害物质进行分解。在当前光催化纳米技术的不断发展过程中,环境保护工作效率和质量也必然会得到显着提升。总而言之,当前我国环境保护工作已经受到了越来越多的影响,甚至对人们的身体健康产生了威胁,所以在此种背景下,更需要加强对相关技术的研究,不断为我国环保工作的顺利开展提供帮助作用,实现可持续工作的顺利进行。

纳米材料论文

纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。小尺寸效应。现在从尺寸效应探讨其特性和应用。

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。量子尺寸效应指当金属或半导体从三维减小至零维时,载流子在各个方向上均受限,随着粒子尺寸下降到接近或小于某一值(激子玻尔半径)时,费米能级附近的电子能级由准连续能级变为分立能级的现象称为量子尺寸效应。金属或半导体纳米微粒的电子态由体相材料的连续能带过渡到分立结构的能级,表现在光学吸收谱上从没有结构的宽吸收过渡到具有结构的特征吸收。量子尺寸效应带来的能级改变、能隙变宽,使微粒的发射能量增加,光学吸收向短波长方向移动(蓝移),直观上表现为样品颜色的变化,如cds微粒由黄色逐渐变为浅黄色,金的微粒失去金属光泽而变为黑色等。同时,纳米微粒也由于能级改变而产生大的光学三阶非线性响应,还原及氧化能力增强,从而具有更优异的光电催化活性[5,6]。

第页纳米材料与技术是在20世纪80年代末才逐步发展起来的前沿交叉性新兴学科领域,它与住处技术和生物技术一起并称为21世纪三大前沿高新技术,并可能引导下一场工业革命。

纳米技术是严谨的高新交叉技术,人类刚刚迈进门槛,就显现出其强大的生命力。有些纳米材料(如纳米金刚石)经过表面改性和分散,可以均匀分布到聚合物的熔融体中,经过喷丝、冷却形成具有特殊功能的纳米纤维,添加比列很低,但每根短纤维上有成千上万个纳米颗粒。可以作成高抗磨、自清洁、防雨、防紫外线、防静电、杀菌、红外隐形等功能布料,很有发展前景。

将人类带入新的微观世界。人类可以从新的纳米技术领域获得很大好处。利用这项技术的目的是在纳米尺寸上操纵物质,以创造出具有全新分子组织形式的结构。这有可能改变未来材料和装置的生产方式,并且给人类带来巨大的经济益处。

第页界。

传统的解释材料性质的理论,只是用于大于临界长度100纳米的物质。如果一个结构的某个维度小于临界长度,那么物质的性质就常常无法用传统的理论去解释。而科学家正试图在大哥分子或原子尺度到十万个分子的尺度之内发现新奇的现象。

美国国纳米技术计划初期研究的重点是,在分子尺度上具有新奇的特性并且系统、物理和化学性能有明显提高的材料。比如,在纳米尺度上,电子和原子的交互作用受到变化因素的影响。这样,在纳米尺寸上组织物质的结构就有可能使科学家在不改变材料化学成分的前提下,控制物质的基本特性,比如磁性、蓄电能力和催化能力等。又如在纳米尺度,生物系统具有一套成系统的组织,这使科学家能够把人造组件和装配系统放入细胞中,以制造出结构经过组织后的新材料,有可能使人类模拟自然的自行装配。还有,纳米组件有很大的表面积,这能够使它们成为理想的催化剂和吸收剂等,并且在放电能和向人体细胞施药方面派上用场。利用纳米技术制造的材料与一般材料相比,在成分不变的情况下体积会大大缩小而且强度和韧性将得到提高。

美国西北大学开发的一种比色传感器,已经成功探测出结核杆菌。科学家把探测对象的dna附加在纳米大小的黄金微粒上。当互补的微粒在溶液中存在时,黄金微粒会紧紧地结合在一起,改变悬浮液的颜色。

随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由。

第页于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微粒而言,尺寸变小,同时其比表面积也显著增加,从而产生如下的新奇的性质:特殊的光学性质、热学性质、磁学性质和力学性质。具体的光学性质是当黄金被分割到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,尺寸越小,颜色愈是黑。由此可见,金属超微颗粒对反光的反射率很低。热学性质具有高矫顽力的特征,已经作为高储存密度的磁记录磁粉,大量应用于磁带。利用磁性,人们已经将磁性超微粒制成用途广泛的磁性液体。力学性质是具有良好的任性。因为纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很容易迁移,因此变现出很好的韧性和延展性,使陶瓷材料具有新奇的力学性质。美国学者报道氟化钙纳米材料在室温下可以大幅度弯曲而不断裂。研究表明,人的牙齿之所以具有很高的强度,是因为它是有磷酸钙等纳米材料构成的。呈纳米晶粒的金属比传统的粗晶粒金属硬3到5倍。

一般常见的磁性物质均属多磁区之集合体,当粒子尺寸小至无法区分出其磁区时,即形成单磁区之磁性物质。因此磁性材料制作成超微粒子或薄膜时,将成为优异的磁性材料。

我们对纳米材料的认识还远远不够,还需要不断的探索和研究。相信通过不断的深入,一定会使纳米在更多的领域里发挥作用,服务于生产和生活。

第页。

参考文献:

第页。

纳米材料论文

摘要:目前世界上上转换纳米荧光材料正处在发展阶段,材料的选择和合成有待于深入细致的研究。本文对上转换发光纳米晶的选择和合成做了系统的讨论。

关键词:纳米材料发光材料上转换发光荧光材料双光子吸收纳米晶。

近年来,人们开始对荧光标记材料产生了浓厚的兴趣,特别是随着纳米技术的发展,能够进行生物标记的无机纳米晶成为人们追逐的热点,但是由于生物背底同样会产生荧光从而对荧光检测形成干扰,于是不会产生背底干扰的稀土上转换纳米发光标记材料引起了人们的注意。

纳术概念是1959年木,诺贝尔奖获得着理查德。费曼在一次讲演中提出的。他在“thereisplentyofroomatthebottom”的讲演中提到,人类能够用宏观的机器制造比其体积小的机器,而这较小的机器可以制作更小的机器,这样一步步达到分子尺度,即逐级缩小生产装置,以至最后直接按意愿排列原子,制造产品。他预言,化学将变成根据人仃〕的意愿逐个地准确放置原子的技术问题,这是最早具有现代纳米概念的思想。20世纪80年代末、90年代初,出现了表征纳米尺度的重要工具一扫描隧道显微镜(stm),原子力显微镜(afm)一认识纳米尺度和纳米世界物质的直接的工具,极大地促进了在纳米尺度上认识物质的结构以及结构与性质的关系,出现了纳米技术术语,形成了纳米技术。其实说起来纳米只是一个长度单位,1纳米(nm)=10又负3次方微米=10又负6次方毫米(mm)=10又负9次方米(m)=l0a。纳米科学与技术(nano-st)是研究由尺寸在1-100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。关于纳米技术,从迄今为止的研究状况来看,可以分为4种概念。在这里就不一一介绍了。

稀土上转换发光材料通过多光子机制把长波辐射转换成短波辐射称为上转换。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。由此可见上转换发光的本质是一种反stokes发光,因此,也称上转换发光为反stokes发光。早在1959年,就出现了上转换发光的报道。用960nm的红外光激发多晶zns,观察到了525nm绿色发光。上转换发光的机理可以归结为4种情况:

(1)单离子的步进多光子吸收,这实际上是激发态吸收(esa)的过程。

(2)直接双光子吸收。这也是一个单离子过程,能量为e1和e2(e1与e2可以相等也可以不相等)的两个光子从一个虚拟的中间量子态被同时吸收终态e3=e1+e2。

(3)多个激发态离子的共协上转换。

(4)光子雪崩吸收上转换。

2.1共沉淀法。

组分体系的制备就可能存在一些问题。冈为它对于原料的选择会造成一定的困难,同时还要求各种组分具有相同或相近的水解或沉淀条件,这样必将对所合成的多组分体系有一定的要求,从而限制了它的使用。.iohanneshampl等人用高温流化床合成出了具有较好分散性的er,yb共掺的氧硫化物。合成时,将er,yb和y的硝酸盐用尿素共沉淀,得到的沉淀在840℃下通过h2s和水蒸气,最后在1500℃的流化床中用ar气保护活化,这样得到了尺寸大约400nm的粒子。硫化物的粒子形态较好,一般为圆形,但是要求较高的活化温度(1500~),在此温度下粒子容易粘连,所以在硫化床中活化,这样加大了合成的难度。

2.2水热法。

水热法也是近几年来研究无机发光材料中发明的又一新兴的合成方法。此法主要是在特制的反应釜(高压釜)中,采用水溶液作为反应体系,通过将反应体系加热至临界温度(或接近临界温度),在反应体系中产生高压环境从而在一定温度和压力下,使物质在溶液中进行化学反应的一种无机制备方法。在水热法的基础上,以有机溶剂代替水,采用溶剂热反应来制备发光材料是水热法的一种重大改进,可以适用于一些非水反应体系的制备,从而打一大了水热技术的适用范围。

上转换纳米微粒的个最重要标志是尺寸与物理的特征量相差不多,例如。当上转换纳米粒子的粒径与超导相干波长、玻尔半径以及电子的德布罗意波长相当时,小颗粒的量子尺寸效应十分显著。

与此同时,大的比表面使处于表面态的原子、电子与处于小颗粒内部的原子、电子的行为有很大的差别,这种表面效应和量子尺寸效应对纳术微粒的光学特性有很大的影响。甚至使纳米微粒具有同样材质的宏观犬块物体不具备的新的光学特性。

例如:

1.宽频带强吸收。纳米氮化硅、碳化硅及氧化铝粉对红外有个宽频带强吸收谱。这是因为纳米粒子大的比表面导致r平均配位数下降,不饱和键和悬键增多,与常规大小材料不同,没有一个单一的,择优的键振动模.而存在个较宽的键振动模的分布.在红外光场作用下它们对红外吸收的频率也就存在个较宽的分布,这就导致了纳米粒于红外吸收带的宽化。

2.吸收带蓝移现象。这可能由于两方面原因,一是量子尺寸效应,由于颗粒尺下降能隙变宽,这就导致光吸收带移向短波方向,ball等对这种蓝移现象给出了解释:已被电子占据分子轨道能级与未被电子占据分子轨道能级之间的宽度(能隙)随颗粒直径碱小而增大.这是产生蓝移的根本原因。这种解释对半导体和绝缘体都适用。另一种是表面效应。由于纳米微粒颗粒小,大的表面张力使晶格畸变,品格常数改变。对纳米氧化物和氮化物小粒于研究表明第一近邻和第二近邻的距离发生变化。键长的改变导致纳米微粒的键本征振动频率改变,结果使光吸收带发生移动。3.量子限域效应。半导体纳术微粒的半径rab(激子玻尔半径)时,电子的平均自由程受小粒径的限制,局限在很小的范围,空穴很容易与它形成激子,引起电子和空穴波函数的重叠,这就报容易产生激子吸收带。

当上转换纳米微粒的尺寸小到一定值时可在定波长的光激发下发光。1990年,日本佳能研究中心的h.tabagi发现,粒径小于6nm的硅在室温下可以发射可见光。随半径减小,发射带强度增强并移向短波方向。当粒径大干6nm时,这种光发射现象消失。tabagi目认为硅纳米微粒的发光是载流子的量子限域效应引起的。brus认为,大块硅不发光是因为它的结构存在平移周期性,由平移对称性产生的选择定则使得大尺寸硅不可能发光,当硅粒径小到某程度时(6nm).平移对称性消失,因此出现发光现象。

1电沉积纳米晶材料技术屠振密[等]编著2008。

2发光材料与显示技术徐叙瑢主编2003。

3有机发光材料、器件及其平板显示李文连著2002。

8杨剑滕凤恩《材料导报》1997第2期。

9纳米材料及其技术的应用前景张中太2000材料工程。

10李彦施祖进纳米团簇的超分子自组装[期刊论文]-化学进展11张立德纳米材料的发展1994(03)。

课程写作小论文范文课程小论文字

按照学校要求,我们从年月开始进行毕业论文写作相关工作,行进至今,终于完成了自己人生的第一部学术作品,为美好的大学生活抹上了最后的一笔。回想写作过程中的点点滴滴,真是感慨颇多。

一开始,总觉得写论文对于没有经验知识浅薄的我们来说是那么困难的一件事。所幸的是,我们的论文指导老师老师专业且极富责任心与耐心,一路走来给了我们不少的指引。也是老师的教导让我对论文写作有了新的理解:它绝不仅仅是单纯的写作过程,更重要的是从中提升自己的学习与分析总结能力,并树立严谨的学术钻研精神。对于论文写作的正确理解让我在写作过程中变得更加积极主动收获更多。

写作过程分为两个阶段,上学期主要进行选题的讨论与确定以及资料的收集,本学期则进入写作的关键时期。在整个过程中,我查阅了大量的文献和资料并进行相关的思考,让我增长了不少的知识,也让我学会多角度的看待分析问题。当然,在这里还必须感谢曹老师不辞辛劳的每周都与我们进行论文内容的讨论与指导。帮助我们在迷茫的时候走出困境,走出自己的定势思维。一路走来,论文改写了好几次:开始时是大纲内容冗杂重心不明确进行修改;之后是对内容上不必要的重复进行删减;也曾因为重要词汇措辞不当进行改进;还有因对概念理解错误各小节划分缺乏逻辑进行的重新推敲??每一次的批评与改进,都让我对自己的选题有进一步的思考与理解,就这样,在曹老师的精心指导和严格要求下,我的写作思路由浑浊变得清晰,内容由空泛变得充实,语言由粗糙变得相对精炼,格式由业余变得规范。通过这次毕业论文的写作,我不但加强了对专业知识的更深入的理解,还学会了检索信息,收集材料,电脑排版,论文格式等多方面知识,更加学习到了曹老师那种严谨认真、务实规范的治学之风。这是我四年大学极为重要的一课。

本次论文的写作,让我增长了知识和技能,也让我明白,不论做什么事情都必须抱着务实谨慎不怕困难的态度,精益求精。当然,在本次的写作过程中,也让我感受到了自己作为本科生在知识与实践经验上的匮乏,管是对于我所研究的“中小企业融资难问题”还是金融学的其他知识,我们所要学习的都还有太多太多!作为天才学子,我们决不能停止学习的步伐,在将来的工作与生活中,依然要抱着学海无涯的求知态度不断完善与提升自己。

1.科技论文写作课后心得。

2.论文写作心得体会。

3.论文写作要求。

4.论文写作的步骤。

5.论文写作流程。

7.毕业论文写作的心得体会。

8.关于论文写作的培训心得体会。

9.关于一线教师论文写作培训的心得。

10.论文写作时间安排。

纳米材料与纳米技术在计算机网络系统中的应用分析论文

计算机软件工程管理需要管理人员具有足够的专业知识和丰富的工作经验,但是我国在计算机软件工程管理方面还处于初级阶段,严重缺乏高素质的管理人员,这也严重制约了计算机软件工程管理的提高。计算机软件工程管理中一个重点就是组织机构的管理,其不仅可以保证人力资源调用、分配的科学性和合理性,还可以汇合管理开发人员,充分发挥人力资源最大的优势,极大地提高工作质量和效率,这也是目前计算机软件工程管理需要重点研究的问题。

1.2工作人员管理。

工作人员的管理相对于组织机构管理来说更具有针对性,管理过程也更加具体。计算机软件工程能够顺利发展的关键就是工作人员,同时工作人员还是软件的直接参与者,因此,工作人员的管理不仅包括软件的开发设计,还包括软件的实施应用。在进行工作人员的管理时,需要详细、全面地了解工作人员的综合素质和专业能力,将合适的人放在合适的岗位上。

1.3软件用户管理。

软件用户管理可以分析用户的反馈信息、调查市场、收集用户信息,从而优化和完善软件工程。为了使软件的开发更加符合社会发展和用户的需求,就需要在开发实际的软件项目前,充分地调查和研究市场,采集不同用户群体的各类信息,在此前提下优化开发设计,尽可能地降低软件工程的风险。

1.4档案资料管理。

计算机软件工程规模随着科学技术的发展而不断庞大,其包括大量的档案资料和数据信息,庞大的信息量和资料也加大了档案资料的管理难度。软件工程的档案资料管理包括两个方面,一个是开发过程中备份和存档相关的资料,另一个是收集和整理项目期间的.档案资料。重视档案资料的管理不仅可极大地提高软件开发的效率,提升档案的安全性,还有利于软件后期的维护与开发[1]。

纳米材料与纳米技术在计算机网络系统中的应用分析论文

一、概述。

纯碱是基本化学工业中产量最大的产品,是用途十分广泛的工业原料,在国民经济中占有非常重要的地位。随着我国国民经济的飞速发展,对纯碱的需求量不断增大,为了满足市场需求,除了扩大生产规模外,还必须进一步发掘生产潜力。

山东潍坊纯碱厂是一个新建厂,设备先进,但纯碱生产大部分还是人工操作,落后的操作方法已不能适应生产发展的`需要。为了解决先进设备与落后操作的矛盾,稳定生产,提高原料利用率,降低能耗,增加产量,碱厂从美国霍尼韦尔公司引进具有先进水平的tdc-3000集散型控制系统,并用于制碱生产的心脏工序――重碱碳化工段,以实现工业生产的全局控制。

工业生产的全局控制包含着两层意义,一是指生产过程的自动化,二是指企业管理的自动化。生产过程的自动化指的是生产过程采用计算机控制,用计算机自动调节各生产要素,做到产品的高产、优质与低耗。企业自动化管理指的是调度、经营与决策的自动化,就是把当前生产的全部信息汇总起来,使管理决策者能够对全厂的生产、经营进行整体安排与调度,以期取得全厂各部门生产活动的协调进行,达到整体效益的最佳工业过程。全局控制系统可分为以下4级:。

3.生产管理级管理。

[1] [2] [3] [4]。

纳米材料与纳米技术在计算机网络系统中的应用分析论文

纳米材料的概念是一位德国学者在1980年首次提出的,他是只晶体晶粒尺寸在1~100数量级的超细材料。晶体晶粒的尺寸在标准级内,被称为超细材料,納米级高于1nm的被成为超细材料。严格意义的纳米材料尺寸在5nm数量级。纳米材料制作新时代产品的工艺技术是纳米技术。

超细晶粒的优异特殊性能是由纳米材料的特殊性能引起的,由此特性导致的众多实验结果,引起了科学界的广泛重视,这也使得纳米科技迈入了科学界的桥处低位。纳米晶体材料、复合材料被统称为纳米材料。

纳米材料的空间维数由纳米结构的区分可以分为:(1)零维的纳米颗粒材料;(2)一维纤维纳米材料;(3)二维层状纳米材料。所有固态晶体材料均是晶体结构的晶粒以及具有无序排列结构的晶界组成,而晶界的厚度占的体积分数很小可忽略不计,而纳米材料中界面部分所占的体积分数相当大,使得纳米材料成为一种新的结构状态。此外,由于纳米晶粒中的原子排列十分无序,使得通常大晶体材料产生分裂而成为分子轨道的能级。高浓度界面及原子能级的特殊结构导致纳米材料的性能的显著改变。纳米材料及纳米技术被公认为是21世纪最有前途的研究和发展领域。

2纳米材料的特性。

2.1纳米材料独特的表面效应。

纳米材料的表面原子数是有变化效应的,引起变化效应的是由原子数和总原子数的比例与晶粒的尺寸配比的,这样的变化成为纳米材料的表面效应。相似形状的粒子的表面积与其线尺寸的平方成正比,由此可得其比表面积(表面积/体积)与线尺寸成反比。

粒子线尺寸的变化对表面积会造成显著影响,粒子线增大,表面积见效,表面积的原子数也会响应的增加,由此导致表面原子配属的重大失衡使纳米材料的化学性显像明显。

2.2纳米材料的体积效应。

纳米材料的体积效应是由于单个纳米粒子所包含的原子数很少导致。金属纳米粒子靠近费米面进一步假设他们的能级为准原子态,由此得到费米能级。纳米粒子的直径减小导致能级间距将增大,进而电阻率将增大,甚至会导致绝缘体。对具有同素异构转变的金属纳米粒子还会出现非导电的高温结构相,此情况仅在粒子中观测到。

2.3纳米材料的量子尺寸效应。

纳米粒子的尺寸下降会导致半导体中分子轨道能级被占据,从而使得处于分离的量子化能级中的电子的波动性效应。纳米粒子的尺寸相当或更小时,呈现量子尺寸效应。例如,光吸收材料的特征波长而显示出极高的矫顽力。

2.4纳米材力学性能的效应。

纳米材料的性能效应是由纳米粒子细化和材料的强度造塑性共同显现的。为了提高材料结构的强度,晶粒细化可以大大增强这种效应,并且第二次强化的过程随着尺寸的增加会显著增大,效果更强。结构纳米材料中,晶粒的相位结构更加细化,使其力学性能远超其他结构材料之上。纳米陶瓷和金属的任性已达到了普通金属材料的韧性水平,超过了超级钢。

3纳米技术。

范围在10~7cm范围内的物体,经常显示出物理化学甚至生物性上的异样特征和现象。纳米技术的通俗定义是纳米尺度利用的结果。纳米在发展过程中,中字和电子交互作用形成波动,丰富了纳米尺度利用的方式。

结构的特征尺寸介于10-9~10-7m(1~100nm)的范围,物体经常显示出物理、化学和生物上新颖而明显改善的特性和现象.纳米技术是在一个纳米尺度利用功能结构的通俗定义。在纳米尺度上的重大改变主要是由于物质中的电子和原子交互作用的波动。通过创造纳米尺度的结构能控制材料的基本特性,由此将出现以前被认为生物系统的一个重要特性是物质在纳米尺度上有系统的组织。(-9和-7上标吗)。

纳米技术的一大特点便是允许将所需信息储存在纳米表面,无需机器人和其他原件共同的配合储存.材料和生物科学技术结合,会得到全新的加工方法和工业动能.纳米尺度和微米尺度共同材料性质相比,纳米结构的韧性十足,不受影响.纳米体积的催化剂会大大减少废物产生和简介污染。纳米结构比微米小很多,所以纳米构成系统的原件密度大大高于微米尺度构成的原件。电子元器件在纳米结构的控制下相互作用,会得到新的电子元件,减低能耗的同时可以大大提高动能,提高效率。典型的纳米技术。

(1)自然界的纳米技术。叶绿体是进行光合作用的核心,其内部包括纳米级的分子结构,具有转化光能和二氧化碳为生物化学能的高活性.人类和动物牙齿表面的纳米级微晶,光滑并具有很高的硬度.

(2)早期的纳米技术。摄影和催化是早期的纳米技术。这两项技术通过纳米技术的发展而大幅提高。大部分现有的纳米技术是意外地发现的,例如,现在我们知道在橡胶中加入某种无机粘土可提高轮胎的寿命和耐磨性。

(3)铁磁流体。磁铁流体是一种由高精度纳米颗粒组成的胶体,纳米颗粒是永态磁体,只有当铁磁流体的磁场为零,附加磁场生成变化,才会发生共生反应。铁磁流体区别于其他流体,在得到外加磁场的同时,由于力矩产生于铁磁流体内部,特殊的流体力学现象会显现。

(4)硬质材料。纳米结构的硬材料正在进入商业领域.如wc/co和tic/和co组成的纳米材料形成双连续纳米结构,获得优异的材料性能的同时硬度、断裂韧性和耐磨性都有显著提高.

(5)纳米涂料。纳米涂料的热喷技术将纳米结构材料应用于商业的途径.晶粒尺寸达到纳米尺度并且原子数目是可控范围内时,境界颗粒的纯度达到最大,和其他晶粒材料共同具备抗腐蚀能力。热稳定性和抵抗位错是纳米晶粒的特性,由此特性可以衍生出超高的硬度和韧性。纳米级涂料在日常使用过程中,可以减小涂料的应力状态,提高涂层厚度,抗腐蚀性能极强,耐老化。该技术现已应用在涡轮叶片,螺旋桨机翼等部件,每年有几十亿美元的潜在应用市场。

(6)纳米技术与相关技术路径分析。任何技术领域都无法独立的存在于科研领域,都是相对独立但又不同程度的和其他技术形成交互过程的情况,技术领域性质的差异导致独立发展和互溶发展间的异样表现形式。专利技术领域的共同关系,可以阐明技术领域间多项技术的互动关系。表1按共现特征统计了三个阶段纳米技术发展趋势。

4网络骇客攻击。

骇客攻击指的是通过破解系统的某个程序来获取数据甚至是获利,骇客攻击的主要手段分为破坏性和非破坏性。非破坏性仅影响系统的正常运行而破坏性则会盗取用户的重要数据,形成重大影响。

骇客攻击的常见模式是通过干扰程序运行、获取文件和传输方式等不被许可的操作。骇客攻击的对象和数据一般都是非常重要或者机密的,当攻击形成以后,会对客户造成重大损害。在使用电子邮件、木马等手段来攻击时,给整个计算机网络造成了极大的损害。由于骇客对于计算机网络正常运行有着重要的影响甚至是重大损害和经济威胁,各国对于该领域均非常重视,但就目前,防御骇客攻击的相关技术人才非常紧缺,相关培训也凤毛麟角,美国的国安局已成为对骇客人才需求最为迫切的美国联邦机构。骇客领域中威胁计算机网络安全的因素,如表2所示。

5计算机病毒。

计算机病毒非常常见,是通过编制一些计算机指令,并且插入一定数目的损害性数据,使其能够达到自我复制的计算机指令。计算机病毒有各自的特点,大部分分为伴随性、蠕虫性、变型形等形态的病毒。这些病毒有些是随时呈现激活状态的,有些是自身释放在内存中,一旦计算机重启或者关机,只要接通电源,便可实施传染;但有些病毒在电脑中仅有一小部分的占用空间,即便激活状态也不会对计算机形成过大的伤害。

5.1系统漏洞。

系统漏洞是指由于操作软件设计的疏忽和技术上的不完善,为不法分子窃取该软件的程序流提供了机会,使得系统被各种木马和病毒等侵入计算机,从而实现大面积控制,进而得到重要的信息和文件,甚至于破坏了电脑操作系统。系统漏洞也作为病毒的入侵入口存在。

长期以来,正版系统都以其高昂的购买成本让大多数人望而却步,大多数人还在使用着盗版系统,但盗版系统通常会留下非常多的系统漏洞。主要漏洞类型分为up漏洞、账号类漏洞和热键类漏洞。这些漏洞的存在也进一步提供了病毒的扩散温床,导致计算机病毒的进一步扩散,影响了计算机的网络安全。

6.1防火墙技术防火墙。

防火墙通过执行站点的安全策略,从而限制人们从定制的控制点离开;同时所有的的信息想要进入计算机,都必须通过防火墙,这样就能够有效的记录网上的所有活动,防止病毒侵入;防火墙能够通过隔开网络中的一个网段与另一个网段,从而能够很好对用户暴露点进行保护与限制。

7.1数据加密技术。

数据加密技术作为一种新兴技术,也是计算机网络安全的保障性技术,是指传送方通过各种加密函数转换形成密文,接收方对于数据加密技术的控制,需要数据加密技术的指定性。要求只有在解除密码后,才能而获得原来的数据,这些特殊的信息就是密钥。密钥共分为三类:专用密钥、对称密钥和公开密钥。

计算机网络由繁多的路径所构成,非常复杂,信息的传播也异常广泛,如何保证信息在传播过程中的安全性和时效性,需要通过计算机信息的加密技术来实现。

7.2网络访问控制技术。

网络访问控制技术指的是以路由器作为网关,对外界的网络服务信息控制和筛选。这种技术可以防止计算机在实施远程登录和文件使用过程中,防止不法分子通过漏洞,对电脑进行空盒子。对访问者的身份进行深入检测后,可以有效的防止入侵,确保计算机在网络中的安全。

7.3安全漏洞检测技术。

安全漏洞检测是一项重要技术。通过安全漏洞扫描能够帮帮助用户在骇客攻击之前找到系统的漏洞,并及时的恢复。在对安全漏洞进行检测的可以从各个方面进行了预防,保证网络的安全。

7.4数据库的备份与恢复技术。

为了防止防止系统发生意外,数据库的备份与恢复技术需要保证数据的安全性和完整性。这种备份技术主要有数据库、备份数据库和事物日志来更好的确定网络的安全。数据库系统的构成模块,如图1所示。

7.5系统功能结构图的测试环境。

测试环境。本系统的测试主要硬件环境:intelpentiumd2.8g;软件环境:windowsr2;测试工具:netbeansprofile3.2。从测试结果来看,在整个架构中,索引是由guice维护的单例进行单线程索引,整个系统在最慢的环节遇到了瓶颈,因此线程数从3个提升到4个引起的性能并没有很大的提高,猜测线程数如果继续提升到某个数值,系统效率反而会下降。

8结语。

在系统功能上,由纳米材料和纳米技术逐渐延伸的网络技术发展遍历行业内。每个节点根据http协议中的type字段自动找到相应解析器(parser)解析资源,解析器将解析后的resource对象传递给索引模块进行索引,实现纳米技术在计算机网络技术中的抓取過程。在抓取过程中能尽可能过滤重复模块,功能过滤不符合规则的网络节点,能够在抓取过程中统计信息,分析网络应用和系统运行状态。由于使用者对搜索引擎的需求是既有共性又有个性特征,因此只有结合用户需求的实际,开发出相应的检索系统以发挥其相应的作用,产生社会效益。

参考文献。

[6]李刚.利用原子转移自由基聚合方法的木材表面功能性改良[d].哈尔滨:东北林业大学,2011.

浅析纳米材料在生物医学领域的应用方向与特性的论文

摘要:基于纳米技术的纳米包装材料相对于传统包装材料有着机械性能良好、物理化学性能高、加工性能良好的优势,纳米银、纳米二氧化钛、纳米氧化锌都能够被应用在食品包装领域当中。主要针对纳米材料在食品包装中的应用进行研究。

关键词:纳米材料;食品包装;纳米技术;。

在国民经济持续发展的社会环境中,人们对食品的安全卫生要求越来越高,同时伴随着生态环境保护意识的增强,食品包装领域也面临着诸多挑战。纳米技术是在20世纪90年代末期兴起的交叉性科学领域。纳米包装材料是纳米技术的主要应用领域之一,纳米包装材料相对于其他包装材料优势明显。因此,针对纳米材料在食品包装中的应用进行研究对于食品包装领域发展有着重大的意义。

1纳米技术与纳米包装材料。

纳米技术是一项在纳米尺度上对物质的性质与作用进行研究,并且利用物质性质与特征开展多学科、交叉性研究的技术。纳米材料即为材料的几何尺寸已经达到了纳米级别,并且具有一定的特殊性能。当前对于纳米材料的学术研究分为两大方面:第一,针对纳米材料的性能进行系统的研究,并且对纳米材料的微结构进行分析,与常规材料性质、作用进行对比,总结出纳米材料的规律、作用,构建出描述与表征纳米材料的概念与理论。第二,发展应用纳米材料。当前纳米材料应用的核心问题大于在大量制备纳米材料的过程中如何做到稳定化、均匀化制备。纳米材料的体态可以分为纳米颗粒、纳米粉体、纳米薄膜等。纳米材料凭借其结构的特殊性以及特有的效应决定了纳米材料存在一系列与传统材料不同的独特性质,使得纳米材料的电学、热学与光学性能得到了进一步的提升。纳米包装材料主要是对包装材料技能型纳米处理,使得包装材料拥有纳米的包装特性,相对于传统包装材料来说纳米包装材料的机械性能良好,韧性高、可塑性好、使用年限长;物理化学性能高,拥有高耐热性、高透明度、高阻隔性,可以用于特种包装中;加工性能良好,纳米包装材料可塑性强,能够实现吹塑、浇注、注塑成型。

纳米材料在生物医学中的应用论文

微纳米生物技术是纳米科学与生命科学的前沿交叉领域,有着广泛的发展前景。主要是利用纳米科技领域的最新研究成果开展应用基础研究,深入探索多种纳米材料的性质,研究制备既有良好的生物相容性,又具有独特光、电性能的应用型功能纳米材料,并拓展其在生物学领域的应用前景。研究工作也将着重于加强重大疾病、传染病及遗传病的早期诊断与检测,研制新型纳米生物探针和纳米药物载体,发展分子细胞生物学研究的新方法和新技术,探索纳米生物学发展的新途径。

国内外现阶段主要研究方向及对微纳米生物技术的应用主要有:

个正确的锁就可以,也就是说只要先在某种材料上弄出一个可以和分子特殊形状相对应的模板,即可用来检测或分离特定分子。此外,经由设计特殊的分子模板,可达成如控制生化反应、纳米结构效应等功能。例如:新型纳米药物载体:研究与开发基于低生物毒性、低免疫原性、高生物相容性的功能纳米材料,并将其与生物分子(如短肽、蛋白等)结合,发展高效、安全、高靶向性、可控的纳米药物载体及基因治疗载体。

(3)生物选择性表面技术(bioselectivesurfaces):指在微纳米尺度下改变材料表面几何与化学性质,以控制细胞在材料表面的贴附、生长、运动等,进而调控细胞与组织的生理状况。例如以微影图案基质控制神经细胞的生长、透过生物选择性表面技术重建血脑屏障、以生物互动表面分析真菌生长等。

(4)分子过滤技术(molecularfiltration):通常指的是利用孔径在纳米级大小的透膜、微管、多孔材料等来有效过滤大小不等的分子,以达到分离与浓缩等目的。例如以胶原蛋白(collagen)覆于硅芯片表面的过滤装置、以纳米结构进行酵素传输等。

(5)特殊细胞分离技术(sparsecellisolation):有些细胞特别表现出和其它细胞不同的.特性与特殊的生理功能,而这类细胞的数目比例往往很小,因此能否有效将它们从其它细胞中分离出来就显得格外重要。通常本技术会通过开发或使用纳米尺度的仪器或设备达到分离特殊细胞的目的。例如从混合组织中分离被病毒感染的细胞、恶性肿瘤细胞、免疫细胞、胚胎细胞、干细胞及微生物等;或构建亚细胞(subcellular)等级细胞分类及分析系统。

热学、声学、压力、质量变化等相对应的换能器(transducer),将反应转换成可处理的讯号输出。生物传感器的基本结构包括:生物物质层、换能器、讯号处理系统、讯号输出系统。根据感测物质的种类可将生物传感器的种类区分为:酵素传感器、免疫传感器、受体传感器、微生物传感器、细胞传感器、组织传感器及核酸传感器等。

相关范文推荐

猜您喜欢
热门推荐