教案模板的合理设计可以促进学生的积极参与和主动学习。以下是一些教案模板的示例,它们可以帮助教师规范和提升自己的教学设计能力。
五年级分数的基本性质说课稿
本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。
学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。
综合分析课程标准要求及学生实际,我确定本节教学目标如下:
1、理解和掌握分数的基本性质,并且会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。
2、初步养成观察、比较、抽象概括的逻辑思维能力,并在自主探究中正确认识和理解变与不变的辩证关系。
3、受到数学思想的熏陶,养成乐于探究的学习态度。
教学重点:理解掌握分数的基本性质,它是约分、通分的依据。
教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。
根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并且解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。
本节课的教学过程我分五个部分进行
第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。
第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。
第三部分:合作探究,发现规律。主要的是学生找出规律,并且利用规律解决问题。
第四部分:多层练习,巩固深化。主要是巩固所学知识并且进行拓展提高。
第五部分:梳理知识,反思小结。主要是总结全课。
其中,第三部分“合作探究,发现规律”可以细化为三个环节:
环节一:动手操作,进行比较
这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并且比较大小。此环节的设计主要是培养学生的比较能力。
环节二:呈现问题,引导观察
这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。
环节三:交流汇报,得出规律
这一环节主要是学生汇报交流,得出结论。
如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。
应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。
小学五年级数学说课稿《比的基本性质》
新课标中指出“小学数学教学必须从学生的生活实际出发,设计富有情趣和意义的活动,使他们从周围熟悉的事物中学习数学,运用数学。”其实就是让学生带着已有的生活经验、认知经验进入课堂,参与学习。在认知经验中,学生已经理解了除法的意义与基本性质、分数的意义与基本性质,以及分数与除法的关系等知识,掌握了分数乘、除法的计算方法,会解答分数乘、除法实际问题且理解了比的意义。有了这些知识的储备,学生只要进行知识的迁移、类比就可以自主探究出比的基本性质。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。
二、教材处理。
根据教材的编排和学生已有的知识经验,我对本段教材的教学作出以下两点处理:
原教材联系比和除法、分数关系,通过“想一想”启发学生找出比中有什么样的规律?然后概括比的基本性质。我认为这样的编排是一种纯数理之间的推理,是符号之间的运算,欠缺生活气息,难以激发学生的探究热情。为此,我创设了一个生活情境,让学生在解决生活问题的过程中激发探究欲望,不着痕迹地完成了“比的基本性质”的探究过程。
2、例1的教学。
例题由两道题组成。
第(1)题采用“神州五号”的题材。此素材有利于渗透情感价值观的教育,且蕴含了相似变换的数学思想,是非常好的编排。
第(2)题给出的两个比,我认为过于单调,且没能涵盖比的各种呈现形式,为体现课堂的动态生成,教学资源的丰富性,我采用了开放性的教学内容,让学生在学习第(1)题的基础上自主举例练习化简整数与分数、分数与分数、整数与小数、小数与小数、分数与小数等各种比。
以上两点处理均基于数学教育的生活化、数学资源的多元化的现代数学教育教学理念进行个性处理的,并以此提升学生在课堂教学中的主体地位,体现课堂教学的动态生成。
三、教学目标。
2、能力目标:运用比的基本性质,让学生通过尝试来化简并探讨出不同类型比的多种化简方法,从而培养学生的应用能力和创新能力。
3、情感目标:感受生活中处处有数学,数学就在我们身边。培养学生积极、自主的学习探究兴趣,使每个学生都尝到成功的喜悦。
四、教学策略。
1、坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的努力有所感受,有所感悟,有所发现,有所创新。
2、小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
3、“学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。
五、教学程序设计。
(一)创设生活情境,以激发学生的探索欲望。
10克果珍;第二杯200毫升的水,20克果珍;第三杯400毫升的水,40克果珍.同时我也以此在讲台上做了这个实验,同学们会兴致盎然,想尽各种办法帮助小明。
(设计意图是:因为每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣,兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外小明的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时又感受到“数学源于生活”。)。
同学们帮助小明解决问题,有的利用商不变性质,有的利用分数的基本性质。学生在师生互动中说出商不变性质,分数的基本性质的内容。(屏幕出示文字内容。)我接着询问在分数的基本性质里,有哪些关键词?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?通过类比让学生想到比的基本性质,从而引出课题。
(设计意图是:先通过学生回忆已学旧知,进而猜想比的基本性质从而引出课题,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考。)。
接下来,让学生观察商不变性质与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?小组讨论,学生根据讨论结果发表意见,师生共同总结比的基本性质的内容。最后强调学习了比的基本性质,哪些词语是很重要,提醒同学们注意“同时、相同、0除外”这些关键词。
(设计意图是:让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。)。
(三)理解最简整数比。
通过类比让学生明白利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数。同样应用比的基本性质,可以把比化成最简单的整数比。小组讨论怎么理解“最简单的整数比”这个概念?然后达成共识:
(1)是一个比;
(2)前项、后项必须是整数,不能是分数或小数;
(3)前项与后项互质。
(设计意图是“最简单的整数比”是本节课教学的难点,所以先类比然后让学生讨论最后对这个概念产生共识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。)。
(四)教学例1。
1、教学第(1)题。
(1)出示例1的第(1)题。
(2)让学生阅读例题,说说图片中的事件,并按要求列出两个比,然后尝试运用比的基本性质把两个比化成两个最简单的整数比。
(3)师生点评,小结。
(1)要求:分小组进行探究活动,每小组分别举出整数与分数、分数与分数、整数与小数、小数与小数、分数与小数的一个例,并在小组内完成探究练习。
(2)小组汇报探究成果。
(3)简单小结各种比的化简办法。
(这样的设计充分体现了学生的主体地位,把课堂交给学生,让课堂教学资源多元化,让学生在提出问题、解决问题中提升学习能力,在探究活动中体会到学习数学的乐趣)。
(五)应用与拓展。
1、完成教材46页的“做一做”。
2、游戏:小蜗牛找家。
3、判断。
(1)比的前项和后项都乘5,比值不变。()。
(2)比的前项扩大2倍,要使比值不变,后项应除以2。()。
(3)2:12化成最简整数比是3:48。()。
4、完成教材48页第6题。
(设计意图:层次性训练中,提高学生知识技能,发展学生个性。第1、2题是基础性练习,让学生巩固比的基本性质的应用。第3题是判断题,设计目的是加深学生对比的基本性质的理解。第四题使用讨论形式,通过全班的辩论,提高了学生解决问题的能力。)。
五年级数学《分数基本性质》说课稿
各位老师:
下午好!
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
准备大小相等的圆形纸片,水彩笔等。
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
1.(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结。
作为一位优秀的人民教师,时常需要用到说课稿,借助说课稿我们可以快速提升自己的教学能力。我们该怎么去写说课稿呢?以下是小编为大家收集的五......
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
9篇作为一名优秀的教育工作者,时常需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。那么写说课稿需要注意哪些问题呢?下面是小编......
五年级第四单元分数的基本性质说课稿
根据对教材内容的分析,考虑到五年级学生已有的认知水平和生活经验,结合数学学科的特点以及数学课程标准的要求,我制定了如下的教学目标:
为完成本节课的教学目标,我在自己的教学过程中努力构建和谐的课堂,主要通过以下几个方面入手来组织教学的。
第一个环节,情境导入,理解单位“1”,感悟分数意义。
教学中,一开始,由故事引入“平均分”“分数”两个概念,提出“生活中这样的分数有许多,书上也有这样的例子。然后让学生自学课本说清分数的产生。
接下来,让学生用学具在折、画表示一个分数的实际操作中回忆、复习已有的知识,让每个学生多种方法创造分数。让学生上台展示成果,体现了“做数学”的。过程。同时,学生在相互倾听、相互补充的过程中,能够不断丰富自己对分数的直观感受。
然后老师反问学生,究竟什么是分数呢,学生再次自学课本,充分利用教材,培养学生的自学能力,把学习的主动权交给学生,然后小组交流,看懂了什么,还有什么不懂的地方,让学生在自学、讨论、交流的过程中实现对知识的意义建构,再次体现“做数学”的活动,体现学生主体地位,使每个学生尽可能的参与学习的全过程。教师只是引导学生抓住重点内容,先得出一个完整的“分数的意义”的概念,然后针对某些疑点、难点展开研究,逐步建立完整清晰的概念,培养学生探索精神和有序思维能力。
第二个环节,认识分数单位,加深分数意义。
这个环节是让学生在感受分数单位的特点后,先总结再自学课本,从而掌握分数单位。
第三个环节:生活应用,巩固分数意义。
练习设计力求做到由易到难、由浅入深,既巩固新知,又发展思维,体现了层次性、针对性、实效性。如:达标练习中的“用分数表示涂色部分”,而且也注意到了练习的梯度,培养学生的发散思维,通过这个练习加深了对单位:“1”的理解,进而内化分数的意义,也为后面学习用分数知识解决实际问题作了准备如:“拓展延伸”这一环节中“选分数涂色”,我的意图是让学生选分数,涂色表示分数,使学生的思维从单个物体的平均分跨越到多个物体的平均分。让不同情况的学生进行展示。
整个环节,让学生在动手操作、动脑思考、动口说理的过程中全面理解了单位“1”的含义。本节课设计的这些开放性练习题,可以使学生主动学习的空间得以扩展,给不同层次的同学展示的机会,使他们感受到成功的喜悦,从而增强学生的自信心,以收到良好的教学效果。
第四个环节的提升,是逆向思维的练习。
同样的一个同学可以表示不同的分数,猜测单位“1”是多少,在比较中让学生进一步理解:从而使学生对分数意义的理解水到渠成。
第五个环节:课堂小结。
学习数学实质上就是“做数学”。老师给学生提供了丰富的学习资料,让学生采用不同形式和方法“做分数”,很自然地使学生体验、感受分数形成的过程。分数意义的探索完全在学生自己实践、合作、思考下获得。学生“学习的主人”色彩体现的淋漓尽致。让学生充分的交流,适时的抽象、归纳、概括、引导、总结,在让学生充分展示自我的同时,教师很恰当地体现了自己指导者在教学过程中的作用。师生之间的互动,使学生深刻的理解和掌握了抽象的分数的意义。体现了“在活动中学习数学”的现代思想。
五年级数学《分数基本性质》说课稿
各位老师:
下午好!
《分数基本性质》是北师大版小学数学第九册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
1.知识目标:经历探索分数基本性质的过程,理解并掌握分数的基本性质,能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
2.能力目标:培养学生观察、比较、抽象、概括等初步的逻辑思维能力,并且能够正确认识和理解变与不变的辨证关系。
3.情感目标:经历观察、操作和讨论等数学学习活动使学生进一步体验数学学习的乐趣。通过学生的成功体验,培养学生热爱数学的情感。
能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数理解分数基本性质的含义,掌握分数基本性质的推导过程。
根据本节课的教学内容和教学目标采用讲授法,小组合作学习。
准备大小相等的圆形纸片,水彩笔等。
一、故事设疑,揭示课题。
我将以唐僧师徒分饼的故事创设问题情景。八戒吃第一块饼的1/4,沙和尚吃第二块饼的2/8,悟空吃第三块饼的4/16,他们谁吃的多呢?以此引入新课,激发学生思考的兴趣,积极参与到课堂教学中来。并在这个环节设计学生动手折、画、标等活动,折出1/4,2/8,4/16,用彩笔在折的圆上涂出1/4,2/8,4/16,再用铅笔标出分数。在动手做的过程中初步理解分数基本性质。
二、合作探索,寻找规律。
请同学们观察1/4,2/8,4/16;3/4,6/8,12/16这两组分数,分子分母有什么变化,分数又有什么变化?组织讨论交流汇报。如果没有概括出“把0除外”就设计一组练习:分子分母同乘0,完善结论;如果概括出来了,就顺势进行验证。推导出分数基本性质-----分数的分子分母都乘或除以相同的数(0除外),分数的大小不变。
三、巩固练习。
练习题的设计有简单到复杂,例:分数的分子乘5,要使分数的大小不变,分母();2/3=??()/186/21=2/()等这样的题,进行练习。
四、梳理知识,沟通联系。
小结分数基本性质,请同学们回忆“商不变性质”。------在除法中,被除数和除数同时扩大(或缩小)相同的倍数(零除外),商不变。
然后比较这两个性质的联系。这样设计主要是为了共建知识之间的联系,有助于学生灵活迁移应用,触类旁通。
五、多层练习,巩固深化。
1.(1)把5/6和1/4化为分母为12而大小不变的分数。
(2)把2/3和3/4化为分子为6而大小不变的分数。
2.考考你:1/4的分子加上3,要使分数的大小不变,分母应加上()。
六、全课小结。
小学五年级数学说课稿《比的基本性质》
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。
2.培养学生观察、分析、思考和抽象、概括的能力。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育。
教学过程。
一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。
二、导入新课例1.用分数表示下面各图中的阴影部分,并比较它们的大小。
1、分别出示每一个圆,让学生说出表示阴影部分的分数。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的.圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2、观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)。
(2)阴影部分的大小相等,可以用等号连接起来。
3、分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等。那么,表示这4幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。
4、观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)。
(2)观察例2.比较的大小。
1、出示图:我们在三条同样的数轴上分别表示这三个分数。
2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:
3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律,
1、观察前面两道例题,你们从中发现了什么变化规律?“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。”
2、为什么要“零除外”?
3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)。
4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:
1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?(和除法中商不变的性质相类似。)。
(1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3把和化成分母是12而大小不变的分数。
板书:
教师提问:
(1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)。
(4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)。
小学五年级数学说课稿《比的基本性质》
师:什么叫做分数的基本性质呢?就你的理解,用自己的语言说一说。(学生讨论后发言)。
齐读分数的基本性质,并用波浪线表出关键的词。
生甲:我觉得零除外这个词很重要。
生乙:我觉得同时相同这两个词很重要。
师:想一想为什么要加上零除外?不加行不行?
让学生结合以前学过的商不变的性质讨论,为什么加零除外。
教师小结:以三分之一这个分数为例,它的分子分母同时除以零,行吗?不行,除数为零没意义。所以零要除外。同时乘以零呢?我们就会发现,分子分母都为零了,而分数与除法的关系里,分母又相当于除数,这样的话,除数又为零了,无意义。所以一定要加上零除外。(边讲边板书。)。
三、应用。
1.学了分数的基本性质到底又什么用呢?老师告诉你们,根据分数的基本性质,我们就能变魔术一样,把一个分数变成多个跟它大小一样,分子分母却不同的新分数。下面就让我们来变个魔术。
2.学生练习课本例题2,两名学生在黑板上做。
3.学生自己小结方法。
4.按规律写出一组相等的分数。
四、总结。
这节课大家有什么收获?
小学五年级数学说课稿《比的基本性质》
《函数的增减性》是中职数学第二章第三节内容,是函数这一章的重要组成部分,函数这一章是中职数学的重点,并且有一定的难度,因此学好函数的性质显得十分重要。
二、学生情况分析。
知识结构。
学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,能从图象的直观变化,学生能得到函数增减性。
能力结构。
通过初中对函数的学习,学生已具备了一定的观察事物能力,抽象归纳的能力和语言转换能力。
学习心理。
函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。
本班学生特点。
本班为苹果园中学高一1班,为理科实验班,学生数学素养较好。
三、教学目标分析。
根据本课教材特点、课程标准对本节课的教学要求以及学生的认知水平,教学目标确定为:
1.知识与技能:
(1)从形与数两方面理解单调性的概念。
(2)初步掌握利用函数图象和单调性定义判断。
(3)通过对函数单调性定义的探究,提高观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高推理论证能力。
2.过程与方法:
(1)通过对函数单调性定义的探究,渗透数形结合思想方法。
(2)经历观察发现、抽象概括,自主建构单调性概念的过程,体会从具体到抽象,从特殊到一般,从感性到理性的认知过程。
3.情感态度价值观:
通过知识的探究过程培养细心观察、认真分析、严谨论证的良好思维习惯;领会用运动的观点去观察分析事物的方法。
四、教学重难点分析。
根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用。虽然高一学生已经有一定的抽象思维能力,但是要用准确的符号语言去刻画图象的增减性,从感性上升到理性对高一的学生来说比较困难。因此,本节课的教学难点是函数单调性描述性概念的形成。
五、教学方法分析。
因此,根据教学内容和学生的认知、能力水平,本节课主要采取教师启发式教学法和学生探究式教学法。以设置情境、设问和疑问进行层层引导,激发学生积极思考,逐步将感性认识提升到理性认识,培养和发展学生的抽象思维能力。引导学生提出疑问,进行思考,从而创造性的解决问题,最终形成概念,培养学生的创造性思维和批判精神。
六、教学过程。
1.创设情境、引入新课。
上山与下山的路线分析(上升、下降)。
学生:分析路线曲线的特点(学生描述)。
展示函数图象。
学生:观察图像、描述图像特征。
教师:总结学生答案,纠正错误。
结合增减性是局部性质,学生会用直观描述回答:在一个区间里,y随x增大而增大,则是增函数;y随x增大而减小就是减函数。
学生用图象的感性认识初步描述了单调性,下面进一步将学生从感性向理性进行引导。
(二)初步探索、形成概念。
学生在老师的指导下得出:
在此过程中要复习一下之前学习的区间的知识。
求函数的单调区间,主要通过观察描述。
在例题一的处理上要强调第三幅图函数在定义域内不是单调的,但是在“小区间”内是单调的。注意部分与整体的关系。同时在此回顾区间的概念。
在有些问题上可以适当降低难度,比如例二的第三小题:
y=1/x2.学生对于这一题的解决有很大的难度,本着从学生实际出发这一点,我们可以对它适当删减。其他题目注意区间的“闭”与“开”,以及与图像对应的关系。
在学生板书是应该注意促进学习成绩稍差的学生学习积极性,这样还能是大家更好的发现不足,及时弥补,不再犯同样的错误。
课堂小结可以让学生来完成,同时板书设计不宜太过复杂,要简洁明了,这样更有利于学生记忆,掌握所学知识。作业要尽量简单基础,不能让学生对于作业有种负担感,这样才能促使学生独立完成,减少学生抄袭作业的情况。
总之这节课主要还是以学生的认知结构,和学习现况出发,坚持“学生为主题、教师为主导、训练为主线”的思想。
小学五年级数学《分数的基本性质》教学反思
《分数基本性质》是北师大版五年级数学上册内容。是在三年级下册已经体验了分数产生的过程,认识了整体“1”,初步理解了分数的意义,能认、读、写简单的分数,会简单的同分母分数加减法的基础上,学习真假分数,分数基本性质,约分通分、比大小等知识,为后续学习分数与小数互化、分数乘除法四则混合运算打好基础。
学情分析。
学生已经知道了真假分数,掌握了分数与除数的关系及商不变性质,再来学习分数基本性质。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小却不变。学生在这种“变”与“不变”中发现规律,掌握新知识。
教学目标。
2、能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣,会用分数基本性质解决实际问题。
教学重点和难点。
教学过程。
一、复习中猜想。
1、这几天的学习我们一直在和分数打交道,通过学习我们知道分数和除法之间有着密切的联系,那我们今天的学习就从一道除法算式开始。出示除法算式2÷5,请学生不计算说出与它结果相等的不同的除法算式。(教师选几组板书)并请学生说说是根据什么写的。(商不变的性质)引导学生回忆商不变的性质。学生回答后出示:在除法里,被除数和除数同时扩大或缩小相同的倍数,商不变。
2、引导学生说说分数与除法的关系,再把除法算式写成分数。
二、探究中验证。
1、有了猜想我们就要验证。请同学们拿出三张同样大小的折好的正方形或长方形纸,让学生用分数表示涂色部分。(分别是1/2、2/4、4/8)。
5、学生汇报讨论情况。(教师启发点拨并结合学生的回答在黑板上板书思维示意图)。
6、教师运用课件演示分数的分子和分母变化规律再次验证猜想,加深学生的感知与发现。
7、质疑:请同学们看书,书中的表述和我们猜想的表述一样吗?哪不一样?(点拨倍数与数的区别)。
课件出示三组式子请同学判断是否正确,进一步理解为什么要0除外。
三、巩固运用。
1、认识了分数的这一规律,你能运用这一规律解决问题吗?
生独立完成,集体订正,并交流有什么好办法填的又快又准?
2、把分母不同的分数化成指定分母而大小不变的分数。
学生尝试独立完成,集体订正。
思考并交流:当我们把两个不同分母的分数化成分母相同的分数之后,我们就可以把这两个分数()。(帮助学生认识学习分数基本性质的作用)。
3、解决实际问题。
4、先想想,再说说。
(1)、把3/8的分母扩大4倍,分子(),分数的大小不变?
(2)、把12/16的分子除以4,分母(),分数的大小不变?
(3)、把2/5的分子加上6,分母加上(),分数的大小不变?
(第三小题让学生先猜想再验证,从中发现分数的分子和分母同时加上一个数,分数的大小改变。减去同理)。
5、总结:经过联系我们可以证明我们的猜想是正确的,我们的这一猜想就是分数的基本性质。教师板书课题。学生齐读课题及性质。
四、总结中评价。
这节课你有哪些收获?你还有什么问题?
将本文的word文档下载到电脑,方便收藏和打印。
五年级数学《分数的基本性质》教学设计
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。
1、我们已经学习了分数的有关知识,这节课在已经掌握的知识基础上继续学习。
2、出示例1图。
你能看图写出哪些分数?你是怎样想的?说出自己的想法。
1、教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?
(2)你其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?
(3)演示验证。
2、教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)。
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)为什么要“0”除外呢?
(8)根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
3、完成练一练。
(1)完成第1题。涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
2、完成第2题。独立完成,交流想法。
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
五年级数学《分数的基本性质》教案
有一些同学知道,还有一些同学不知道。不过没有关系,等我们学习了今天的内容之后,我相信在座的每一位同学都能够回答。你们有信心吗?恩,好,那我们就开始上课了!
1、出示例1的四幅图。
我们先来看一道题目。分别用分数表示每个图里的涂色部分。
(1)谁来说第一个?
全部答完后问:这里的1/3谁来说说它表示什么含义呢?3/9呢?
(2)师:这里有个1/2,你能说一个和1/2相等的分数吗?
2/4、4/8、8/16......还有吧,是不是还可以说出好多好多啊?
先别急,先来看看有哪些实验要求。
咱们这个实验的目的上一什么?验证什么?
咱们实验的方法有哪些呢?
实验有什么要求?操作有序什么意思呢?要听从小组长的安排。
1、实验目的:验证猜想。
2、方法:折一折、分一分、画一画、算一算......
3、要求:小组合作,明确分工,操作有序。
我们要来比一比,哪个小组做的实验既快又好。一会儿,我们把他的作品展示一下。好,开始!
学生操作,老师巡视指导。
集体交流结果。
咱们刚才通过做实验,发现这些分数的大小怎样?也就是分数的大小不变。这些分数的大小相等,可是它们的分子、分母变了吧!怎么回事呢?这里面有什么规律呢?你发现了什么?能不能告诉老师。
把你的发现先和同桌交流交流。
生1:我发现由到,分子被扩大了2倍,分母也被扩大了2倍,所以它们是相等的。
师:还有谁想说说你的发现?
生2:我发现由到,分子被扩大了3倍,分母也被扩大了3倍,所以它们的大小相等。
师:换一组数据来说说自己的发现?
生:由到,分子、分母都被缩小了3倍,它们的大小不变。
师:为什么要0除外?
生:一个分数的分子和分母同时乘或除以一个相同的数(0除外),它们的大小不变。
我们一齐读一遍。
师:这个分数的基本性质跟咱们以前学的什么知识有点相似啊?
除法中商不变的性质你还记得吗?
同学们想想看,这两个性质之间有什么关系呢?
根据分数与除法的关系,被除数相当于分数的分子,除数相当于分数的分母,在除法当中有商不变的性质,那在分数中也有它的基本性质。
师:好,那现在你知道阿凡提为什么会笑吗?他又说了哪些话呢?
师:2/6到3/9分子分母怎样变化的?分子和分母同时乘了1.5,呢也就是说这里相同的数不仅可以指整数,还可以指小数。
好,那下面咱们就用今天学的知识来做几道题,好不好?
1、把书翻到61页,练一练第一题,请你涂一涂填一填。我看谁的动作最快。
集体交流。
2、下面我们来填空补缺想理由。(出示练一练第二题)。
他们这样填是根据什么?
3、出示练习十一第二题。
独立完成,集体订正。
练习十一第三题。
今天这节课,你学到了什么?
小学五年级数学《分数的基本性质》教学反思
“分数的基本性质”是学生在学习分数意义的基础上,联系学生已学的商不变性质和分数与除法的关系进行教学的,是约分和通分的基础。
1、新课的引入新颖。
一上课,先通过猜谜,吸引学生注意力,同时渗透同时变化的现象。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此基础上进行抽象概括,使学生深刻理解分数的基本性质。教师环环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。
2、重视学生能力的培养,知识力求让学生主动探索,逐步获取。
在学生大胆猜想的基础上,教师适时揭示猜想内容,并对学生的猜想提出质疑,激发学生主动探究的欲望。
在探索“分数的基本性质”和验证性质时,通过创设自主探索、合作互助的学习方式,由学生自行选择用以探究的学习材料和参与研究的学习伙伴,充分尊重学生个人的思维特性,在具有较为宽泛的时空的自主探索中,鼓励学生用自己的方式来证明自己猜想结论的正确性,突现出课堂教学以学生为本的特性。整个教学过程以“猜想——验证——完善”为主线,每一步教学,都强调学生自主参与,通过规律让学生自主发现、方法让学生自主寻找、思路让学生自主探索,问题让学生自主解决,使学生获得成功的体验,增强自信心。
通过让学生动手、动口、动脑,充分参与教学活动,培养了学生的抽象概括能力、动手操作能力和口头表达能力,充分体现学生的主体作用。
3、让学生在分层练习中巩固深化。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,有坡度。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏,加深学生对分数的基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。这样不仅能照顾到学生思维发展的过程,而且有效拓宽了学生的思维空间,真正做到了学以致用。课堂练习形式多样,有层次,有梯度,目的性、针对性较强,达到了巩固知识、培养技能、激发兴趣、发展思维的目的。
小学五年级数学《分数的基本性质》教学反思
一、复习旧知,横跨温旧引新的桥梁。
在备课时,我就深知分数基本性质和商不变的规律有着密切的联系。所以在上课伊始,我就让学生复习商不变的规律,在课件中展示,并由学生齐读。为了更好的达到温习旧知的目的,我又设计了两道习题,学生在此基础上加深了商不变的规律的印象,为引新起到了很好地铺垫和桥梁的作用。
二、创设情境,激发学生兴趣。
本节课创设了一个故事情境:阿凡提在一次施行途中,遇到了一件事。一父亲把土地分给三个儿子。大儿子分到田地的1/3,二儿子分到了田地的2/6,三儿子分到了田地的3/9。大儿子和二儿子嫌少,同父亲争执了起来。阿凡提听后大笑,说了几句话,他们马上停止了争执。随后问:“阿凡提大笑?他说了些什么?”引生猜测。学生在新奇有趣的故事情境中充满了好奇心,很快将思维转到比较1/3,2/6,3/9的大小上来。教师创设悬念:学完了本节课,你就知道了。学生抱着解决问题的态度学习新知识,收到了很好的效果。
三、手脑并用,在实践中深入感知分数。
教师让学生用一个长方形纸,对折再对折,即平均分成4份,给其中的3份涂色,并用分数表示出来。学生在动手的同时也在动脑,得出分数3/4,因势利导,在两次对折的基础上再对折,那么阴影部分的面积是多少?(6/8)再次对折呢?(12/16)……挥手一指:长方形的纸有没有变化?(没有)阴影部分的面积有没有变化?(没有)那么得到了什么结论?学生很容易得出:3/4=6/8=12/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时扩大(或缩小)相同的倍数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
四、巩固练习,围绕中心。
在设计练习的过程中,联系生活实际,我设计了判断题、填空题等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
五、总结升华,结束本课。
最后,教师问:通过本节课的学习,你学习了哪些知识,有哪些收获?在学生回答的过程中师生进行补充,学生更加深刻地认识了分数的基本性质,为今后的学习应用打下坚实的基础。
五年级数学《分数的基本性质》教学设计
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
《义务教育数学课程标准(2011年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的认识。
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
本着让学生“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:
1.联系旧知,质疑引思。
2.自主操作,验证猜想。
3.知识应用,巩固提高。
4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律。
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想。
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解。
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2。
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高。
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知。
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。
北师大版五年级数学《分数基本性质》教学设计
一、创设情境,激发学生兴趣。
本节课创设了一个故事情境:孙悟空请猪八戒吃西瓜,猪八戒贪吃,先分给它1/3,它嫌少;分给他2/6,它还想多要;后来分给它3/9,这下它才觉得满意,觉得自己赚了一个便宜?它真赚了吗?与学生共同探讨这个问题,出示教材例1,用一个圆表示一个完整的西瓜,让学生用涂色表示分数。观察发现三个分数相等。从而能初步感受新知。
二、手脑并用,在实践中深入感知分数。
请同学们用一张正方形片代,动手折一折,通过三次对折,每次找出一个和1/2相等的分数。比较涂色部分的大小有没有变化?(没有)那么得到了什么结论?学生很容易得出:1/2=2/4=4/8=8/16,引导学生观察分子、分母的变化,经过总结得出分子和分母同时乘(或除以)一个相同的数,分数的大小不变。学生对此进行巩固后,再引导学生说出:0除外。在此过程中,学生在动手实践的过程中动脑思考,很快地突破了重难点,取得很好的效果。
三、巩固练习,围绕中心。
在设计练习的过程中,联系生活实际,我设计了口答题、填空题、涂一涂等,紧紧围绕着教学目标,采取多种形式呈现,学生在此过程中兴趣盎然,在快乐的氛围中巩固了新知,起到了加深理解的作用。
反思教学的主要过程,觉得在让学生用各种方法验证结论的正确性的时候,拓展得不够,要放开手让学生寻找多种途径去验证,而不能局限于老师提供的几种方法。因为数学教学并不是要求教师教给学生问题的答案,而是教给学生思维的方法。
让学生在学习中理解,在观察中发现,在应用中总结,最后运用知识,深化对“分数的基本性质”认识,使学生加深对“分数的基本性质”的理解,激发了学生的学习兴趣,使每个学生都能理解所学知识,学有所获,并为进有步学习约分和通分打下良好的基础。
小学五年级数学《分数的基本性质》教学反思
分数基本性质这节课的教学,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情!这样的设计真是激发了学生的兴趣,学生带着愉快的心情展开了学习。课堂的故事导入就是引导学生以数学的视角来分析问题解决问题,从而让学生感受学习数学的价值。
本节课教学是让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验感受,用自己的思维方式,自由开放地去探索去发现去创造。在学生通过听故事看图片,感受到三个分数相等后,让学生猜想这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的.,体现了学生思维恶的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。
课堂给学生多设计这样的开放性的问题,多给学生开展一些探索性的活动,相信不同的学生在数学上都会有不同的发展。
-->。
五年级数学《分数基本性质》说课稿
《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。
学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。
依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:
知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的数学问题。
过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。
情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。
教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。
教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。
教学准备:三张同样大小的长方形纸张,彩色笔。
树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。
有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。
为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:
1、创境设疑:回顾旧知,引发思考。
2、自主探究:动手实践,发现规律。
3、交流归纳:揭示规律,巩固深化。
4、分层精练:多层练习,多元评价。
5、感悟延伸:课堂小结,加深理解。
第一环节:创境设疑。
结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。
第二环节:自主探究。
通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。
第三环节:交流归纳。
在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。
第四环节:分层精练。
这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。
第五环节:感悟延伸。
通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。
总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。
作为一位不辞辛劳的人民教师,时常需要用到说课稿,说课稿有助于顺利而有效地开展教学活动。如何把说课稿做到重点突出呢?下面是小编收集整理的......
五年级《分数的基本性质》教案
根据课程标准的要求,基于对教学内容的把握,本课时我确定的教学目标为:
1.理解和掌握分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。
2.通过猜想、验证、归纳、总结等活动,经历分数的基本性质的探究过程,体会举具体事例、数形结合的思考方法,感受抽象、推理的基本数学思想。
3.在自主探究与合作交流的过程中,感受数学知识之间的联系,激发学生探究学习的兴趣。我确定本目标的依据有三点:
一是基于对课程标准的理解。
《义务教育数学课程标准(2011年版)》在学段目标的第二学段指出学生要“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程”。
二是基于对教材的认识。
《分数的基本性质》是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的.基本性质显得尤为重要。
三是基于对学情的认识。
作为旧课新上,如何让学生在重新学习的过程中对学习活动任然保持浓厚兴趣,从探究活动中得到新的发展,上出数学味,上出新意,我在思考。本节课常规的是创设情境,在情景中提炼出等式,最终形成性质。因此在教学时,我没有从具体的情境入手,而是从思考一连串的问题开始,通过实验、猜想、验证、结论,从等式的验证上升到规律的发现和归纳,经历定律由特殊到一般的归纳推理过程,在这个过程中积累数学经验、渗透数学思想、掌握数学方法。
据此,
我将教学重点确定为:通过猜想、验证、归纳、总结等活动,让学生经历分数的基本性质的探究过程。教学难点确定:理解和掌握分数的基本性质。
课程标准指出教师要关注已有的知识经验及认知水平,发挥组织者、引导者、合作者的作用。本节课我综合采用了引导发现法、启发式教学法,直观演示法,组织学生经历实验、猜测、验证、得出结论的过程。
学生是学习的主体,学生的学习活动应该是生动的、活泼的、富有个性的,因此,在本节课教学中,我主要采用观察发现法、动手操作法、举例验证法,引导学生静心倾听、认真操作、积极思考、大胆表达,通过动手实践、自主探究、合作交流等多种方式获得广泛的数学活动经验。
本着让学生
“主动参与、乐于探究、学有所得”的理念,结合五年级学生的认知水平和年龄特点,结合教材的编排意图和学情特点,我设计了如下教学环节:1. 联系旧知,质疑引思。 2.自主操作,验证猜想 3.知识应用,巩固提高4.回顾总结,完善认知。
环节一:联系旧知,质疑引思。
“疑是思之始,学之端。”思考这样一连串的问题,目的是唤醒学生已有的知识经验;迅速地点燃孩子们求知欲望;引发学生的数学思考,为主动探究新知识积聚动力。
环节二:操作体验,概括规律
1.观察发现,提出猜想。
通过找与1/2相等的分数,思考证明方法,观察等式,发现规律,于是提出猜想
2.举例操作,验证猜想。
课标指出“学生应当有足够的时间和空间经历观察、实验、猜测、推理、验证等活动的过程”。本节课验证环节,将“分子分母怎样变才使得分数的大小不变”设定为研究的关键点,然后围绕这一关键点让学生展开了操作、感悟、分析、推理等一系列的数学活动,引导学生通过比较全面的大量的例子来验证结论,在观察、实验、猜测、验证的活动中发展合情推理能力。让学生试着用数学的思维去思考,体验如何运用新旧知识间的联系和迁移去分析和解决问题,培养学生好学善思的良好品质。
3.概括性质,深化理解
通过观察算式,经历由特殊到一般的归纳推理,发现分数的基本性质。
4.运用规律,完成例2
尝试运用发现的规律,解决问题。
环节三:知识应用,巩固提高
在有层次的练习过程中,形成技能,发展学生的智力,达成本节课的教学目标,突出重点,突破难点。本节课,我设计了两个层次的练习。一是点对点的基础练习,二是灵活运用所学知识解决生活中实际问题。
环节四:回顾总结,完善认知
通过回顾,梳理所学的知识,提炼数学方法,联系新旧知识,使学生的认知结构得到补充和完善。
有人说的好,教育是一门永无止境的艺术,我知道这节课还有很多不足,恳切的希望各位能给予我更多的宝贵建议,有了你们的帮助我一定收获更多,成长更快。
小学五年级数学《分数的基本性质》教学反思
这节课教学,我先设计了唐僧师徒四人的故事,孙悟空、沙和尚、猪八戒三人每人分得一张饼的1/2、2/4、4/8,我让学生在故事中感悟,激发了他们的学习兴趣。在数学课上讲故事,对孩子来说,无疑是新鲜有趣的。不仅如此,还能从中发现数学问题,这是多么美好的事情。这样的设计真是激发了学生的.学习兴趣,学生带着愉快的心情展开学习。课堂的故事导入就是引导学生以数学的视角来分析问题、解决问题,从而让学生感受学习数学的价值。
这节课教学我让学生在感悟中自主探索。自主探索是学生学习活动的核心,它是让每个学生根据自己的已有经验、感受,用自己的思维方式,自由、开放地去探索、去发现、去创造。在学生通过听故事、看图片,感受到1/2=2/4=4/8相等后,让学生猜想1/2、2/4、4/8这三个分数是否真的相等,并联想学过的知识或借助学具,怎样证明你的联想是正确的。学生想出了多种方法证明这三个分数也是相等的,体现了学生思维的广度,这种设计克服了学生思维的惰性,有利于学生自主探索的学习习惯的养成。
六年级数学《分数的基本性质》评课稿【】
杨学进赵老师的课,给我感受最深的就是教学语言的准确性、严密性,无可挑剔,对学生的启发、点拨恰到好处,与学生的交流亲切自然,驾驭课堂的能力让人佩服。下面就这节课谈谈自己的体会。
1.教材简析。
《分数的基本性质》是小学数学教材第十册的内容之一,在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础。分数的基本性质是一种规律性知识,分数的分子分母变了,分数的大小会变吗?分数的分子分母如何变化,分数的大小不变呢?学生在这种“变”与“不变”中发现规律。
2、教材处理。
(1)坚持以教材为本的原则,把教材中的陈述性教学为猜想与验证性发现。
(2)把总结式教学转变为学生自我发现、自我总结的探究性学习。
(3)以教师的主导地位转化为学生为主体的学生尝试性学习。
3、教学过程。
在新授过程中,赵老师没有单一地把今天所要学习的内容直接出示给学生,而是把一种静态的数学知识变为一种让学生在一种大问题背景下折纸活动,使学生在一种动态的探索过程中自己发现分数的基本性质,从而体验发现真理的曲折和快乐,感受数学的思想方法,体会科学的学习方法。整个课堂创设了一种“猜想——验证——总结反思”的教学模式,以“猜想”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证猜想——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。在这一过程中,学生不仅学得快乐,而且每个学生的个性也充分得到了发展,为学生的长远发展奠定了良好的基础。赵老师设计的练习题的也是由浅入深,形式多样。并让学生在练习中有所提升,组织学生自己讨论寻求解决的办法,体现了自主学习。这节课充分调动了学生的学习积极性,使学生学的轻松、愉快,同时感悟了知识的形成过程。
2012-2-16。