最新光纤通信技术论文(精选20篇)

时间:2023-11-28 21:36:25 作者:笔砚

范文范本是对某一类型的写作作品进行总结和概括的一种资源,它可以为我们提供参考和借鉴的思路。小编为大家推荐了一些经典的范文范本,希望能够给大家提供一些创作的思路和灵感。

简述光纤通信技术的现状与形势论文

如何最大化的拓展光纤带宽,成为各国不断研究目标。目前国际上利用波分复用(wdm)和光时分复用(otdm)技术提升光纤系统容量。为了提高光纤通信系统的传输容量,光波长分割复用技术经历了三个阶段,即波分复用(wdm)、密集波分复用(dwdm)和光频分复用(ofdm)技术,系统传输容量随着技术的发展成千倍提升,目前容量1.6tbit/s的波分复用系统已得到大量商用,全光传输的距离也在大幅提升。另一种提升传输容量的方式是采用光时分复用(otdm)技术,不同于wdm技术通过增加光纤传输信道数量来提升容量,otdm技术是通过提升信道传输速率来提高容量,其单信道最高速率已达640gbit/s。利用波分复用技术,把多个otdm信号进行复用,wdm/otdm混合传输系统可以进一步提高光纤通信系统的传输容量。偏振复用(pdm)技术可以大幅减弱信道间的相互作用,将频谱效率提高一倍。利用占空较小的归零(rz)编码信号,降低了光纤通信系统对色散管理分布的要求,且rz编码适应性较强,因此现在的超大容量wdm/otdm通信系统通常采用rz编码作为传输方式。

3.2光孤子通信。

在光纤反常色散区,由于色散和非线性效应相互作用而产生光学孤子。孤子是一种特别的'波,它可以传输很长距离不变形,特别适用超长距离、超高速的光纤通信系统。光孤子通信就是以光孤子作为载体的通信方式,它实现信号波长在长距离传输过程中无畸变,在零误码的情况下信息可传递万里。光孤子通信未来的前景是利用传输速度方面优势进行超长距离的高速通信,通过时域和频域的超短脉冲控制技术,使现行速率提高十倍以上;利用重定时、整形、再生技术,同时减少ase,增大传输距离,使传输距离提高到十万公里以上;获得低噪声高输出性能。虽然目前光孤子通信技术仍存在许多难题,但已取得很大进展,人们相信光孤子通信在大容量、超长距、高速、的全光通信中有着巨大的发展前景。

3.3全光通信网。

随着人类社会信息化速度加快,人们对通信容量和带宽的需求也呈现加速增长的趋势,通信网两大组成部分,即传输和交换,都在不断发展和革新。随着波分复用技术的成熟,传输系统容量的增长给交换系统的发展带来压力和动力。未来交换系统运行速率会越来越高,而目前电子交换和信息处理网络能力已接近极限,无法满足要求,在交换系统中引入光子技术,实现光交换、光交叉连接和光分叉复用势在必行,未来的高速通信网将是全光网。全光网是光纤通信技术发展的理想阶段,传统的光网络只是实现了节点之间的全光化,但在网络结点处仍采用电器件,从而限制了通信网总容量的提升,真正的全光网已成为科研机构的一个重要课题。目前,全光网络处于初期发展阶段,但它的发展前景是不可估量的。未来光通信发展的趋势是形成一个真正的以wdm技术与光交换技术为主的光网络系统,消除电光瓶颈,建立纯粹的全光网络,这将是通信技术发展的理想阶段。

4结语。

随着人类社会信息化程度的不断提高,随着internet业务和多媒体应用的不断发展,网络的业务量正在以指数级的速度迅速膨胀,光纤通信系统作为信息数据的重要支撑平台,在未来信息社会中起到十分重要的作用。目前,光纤通信系统做为一种最主要的信息传输平台,为人们提供着各类数据信息,保障着人们的生产生活。光纤通信技术的发展也在不断的提升。从现代通信的发展趋势来看,光纤通信技术的发展在不断提升,光纤通信必将成为未来通信发展的主流,真正的全光网络的时代也会在人类科技水平不断地提升下如愿到来。

参考文献:。

[1]顾畹仪,李国瑞.光纤通信系统[m].北京:北京邮电大学出版社,,(11).。

简述光纤通信技术的现状与形势论文

广播电视领域运用光线通信技术就显得比较重要,这一技术的应用对广播电视传输效率以及质量水平的提高就有着积极作用。

本文主要光纤通信的主要系统以及光线通信传输的特性加以阐述,然后结合实际,对光纤通信技术在广播电视传输当中的应用进行详细探究。

引言。

从近些年我国的光纤通信技术的发展现状来看,其中在广播电视领域中的应用发挥着积极作用,成为广播电视传输的重要支持技术,对传输效率以及质量的提高发挥着重要作用。

通过从理论上加强广播电视传输中光纤通信技术的应用研究,就能从理论上进行深化,从而进一步促进光纤通信技术的应用质量水平提高。

1光纤通信的主要系统构成以及光线通信传输的特性。

光纤通信的系统是通过多个部分组成的,光纤通信系统是通过光波作为载体的,并将光纤作为传输介质,光纤通信主要是由光发射机以及光接收机,光中继器以及光纤连接器和耦合器无源器件所组成[1]。

光模块则是光纤通信系统当中比较核心的器件,这一器件的性能对整体通信系统传输的质量就有着直接性的影响。

系统构成当中,光发射机是比较重要的,主要的作用是进行光电转换信号;。

系统中的光纤连接器也是比较重要的部件,主要是用在耦合器中。

光纤通信技术的应用中,对信号传输的效率以及质量提高有着积极促进作用。

光纤主要是通过高纯度玻璃材料进行制造的。

线路主要是通过光纤以及光纤接头和连接器进行组成的,而光纤则是通信线路的主体部分。

在光纤的使用过程中,就成为容纳多根光纤的光缆,线路的性能是通过光缆内光纤传输特征所决定的[2]。

当前对光纤的使用有着多种类型,如单模的光纤只传输主模,沿着光纤的内芯进行的传输,这就避免了模式射散造成单模光纤传输频带宽的情况,对大容量以及长距离的光纤通信比较适用。

还有一种类型就是多模的光纤,工作的波长下多模式在光纤当中进行传输,在受到色散的因素影响下,光纤传输性能就相对比较差,频带方面也较窄。

光纤通信传输过程中,造成光纤损耗的因素比较多,其中主要的因素就是吸收损耗以及辐射损耗和散射损耗,光纤的损耗和光纤通信传输距离长度以及中继距离选择有着直接关系。

将光纤通信技术应用在广播电视传输过程中,就能通过多种方式进行应用,在非压缩传输方式的应用方面就比较重要。

这一传输方式主要是广播电视信号的传输中,信号能从信号源到终端设备不经过处理,这一技术在广播电视的现场直播过程中比较常用[3]。

这一通信传输的技术对设备物理距离的要求比较严格,为能对传输效率的提高,就要采用主设备以及冷设备来实现单边信号传输,这就能对双光缆的优势得以充分发挥,对信号的传输性能也能有效提高。

广播电视传输过程中对光纤通信技术的应用中,通过光缆作为传输的介质,sdh作为传输的平台实施传输。

通过光缆网络作为基础,就能实现数字化数据传输。

压缩传输通信技术的应用中,是信号在传输前在压缩设备的应用下,对光波信号实施压缩,这样就能有效减少信号占用的空间,能有效满足多样化的数据传输,这一技术的应用在独立性方面比较突出,占用的空间也比较少等[4]。

具体操作过程中,技术人员按照最大限度保障传输信息稳定及时性,把压缩传输以及非压缩传输的方式进行结合应用,这样就能有助于广播电视传输的质量效率水平提高。

广播电视传输工作实施中,对光纤通信技术的应用,非本地区光纤电缆再者中心点ter机房汇集,通过传输电路连接到机房覆盖范围。

为能更好的保障传输数据的完整性,通过解码器应用对传输的信号实施压缩解码,就能获得ais信号,再和网络适配器进行结合,对信号长距离输送到ibc机房,就能对节目信号实施解码处理。

3结语。

综上所述,广播电视传输过程中对光纤通信技术的应用,要注重和实际的情况紧密结合,在此次对光纤通信技术的研究分析下,就能从理论层面进行深化,从而进一步提高广播电视传输的质量。

参考文献。

[3]任爱辉.光纤通信技术在电力系统调度自动化中的应用[j].低碳世界,2016(34).

[4]裘建开,庄建勇,何君杰.光纤通信技术的特点及其应用分析[j].信息化建设,(11).

通信技术对网络传输安全性的要求【2】。

因此,在通信技术的应用过程中,网络传输安全性应放在第一位。

保证网络通信安全需要从防范机制的建立、防范问题的查找和网络传输安全问题的解决入手。

面对众多的通信干扰问题,我国应不断的革新通信技术,保证其先进性。

移动通信产业发展迅速,在人们生活、娱乐和工作中发挥了积极的作用。

并且随着科技的发展,移动通信信号的质量增强,移动通信的应用范围较广。

微商迅速崛起,以微信、微博为主的网络通信技术成为普通民众的热爱,而航空航天企业、国家卫星系统的设计上均使用了通信技术,由于通信技术在使用过程中存在一定的安全隐患,因此必须得到重视。

保证通信技术的安全才能维持其可持续发展,未来以微电子和多媒体为基础的技术产业链将构建,保证网络传输的安全性则是其必然要求。

1.1无线通信安全分析。

目前,我国移动通信业务发展迅速,使用人数增加,服务领域扩展。

在工业、军事等领域,移动通信业有着广泛的应用。

但是随着无线通信技术的发展,基站开始覆盖于偏远地区,基站的辐射信号就会受到影响。

同时,移动通信信号的影响因素增多,无线通信干扰也成为通信安全的重要起因,由于基站的设计过程中存在漏洞,加上城市周边安全措施少的影响,移动信号相对较差,移动安全隐患大量存在。

无线电的输出功率远大于额定功率,导致设备的负荷增大,出现互调干扰现象,并且主要体现在发射端和接收端。

1.2移动通信安全与发展。

目前,移动通信系统面临的安全隐患包括信息丢失,垃圾短信侵入等。

现阶段,移动通信在人们生活中的地位不断提高,新媒体也随之出现,移动通信作为较为先进的通信方式被普遍使用,掌握新媒体的应用方式是保证移动通信安全的主要手段之一。

但是移动通信使用过程中,尤其是信息传输过程中,安全隐患依然存在。

新时期网络变得更加方便,微信、支付宝等网络软件都可以提供消费、转账功能,而这恰恰给不法分子提供了机会。

网上购物等行为带来的密码丢失,金钱被盗现象大量存在。

随着我国移动通信的发展,智能化通信模式将进一步实现,但这一过程中设备的更新速度稍显缓慢,并且市场上的移动通信设备质量存在差异性,一些设备很容易被木马攻击。

简述光纤通信技术的现状与形势论文

光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由rayleigh散射所决定的石英光纤理论损耗极限。

目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如ftth用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,wdm和pon,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。as0n的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。

目前在光通信领域有几个发展热点即超高速传输系统、超大容量wdm系统、光传送联网技术、新一代的光纤、ipoveroptical以及光接入网技术。

(一)向超高速系统的发展。

目前10gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(wdm)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

(二)向超大容量wdm系统的演进。

采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用率低于1%,还有99%的资源尚待发掘。如果将多个发送波长适当错开的光源信号同时在一级光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(wdm)的基本思路。基于wdm应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。目前全球实际铺设的wdm系统已超过3000个,而实用化系统的最大容量已达320gbp,美国朗讯公司已宣布将推出80个波长的wdm系统,其总容量可达200gbp或400gbp。实验室的最高水平则已达到2.6tbp。预计不久的将来,实用化系统的容量即可达到1tbps的水平。

(三)实现光联网。

上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。如果在光路上也能实现类似sdh在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。根据这一基本思路,光光联网既可以实现超大容量光网络和网络扩展性、重构性、透明性,又允许网络的节点数和业务量的不断增长、互连任何系统和不同制式的信号。

由于光联网具有潜在的巨大优势,美欧日等发达国家投入了大量的人力、物力和财力进行预研,特别是美国预研局(darpa)资助了一系列光联网项目。光联网已经成为继sdh电联网以后的又一新的光通信发展高潮。建设一个最大透明的、高度灵活的.和超大容量的国家骨干光网络,不仅可以为未来的国家信息基础设施(njj)奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

(四)开发新代的光纤。

传统的g.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光(g.655光纤)和无水吸收峰光纤(全波光纤)。其中,全波光纤将是以后开发的重点,也是现在研究的热点。从长远来看,bpon技术无可争议地将是未来宽带接入技术的发展方向,但从当前技术发展、成本及应用需求的实际状况看,它距离实现广泛应用于电信接入网络这一最终目标还会有一个较长的发展过程。

(五)ipoversdh与ipoveroptical。

以lp业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持jp业务已成为新技术能否有长远技术寿命的标志。目前,atm和sdh均能支持lp,分别称为ipoveratm和ipoversdh两者各有千秋。但从长远看,当ip业务量逐渐增加,需要高于2.4吉位每秒的链路容量时,则有可能最终会省掉中间的sdh层,ip直接在光路上跑,形成十分简单统一的ip网结构(ipoveroptical)。三种ip传送技术都将在电信网发展的不同时期和网络的不同部分发挥自己应有的历史作用。但从面向未来的视角看。ipoveroptical将是最具长远生命力的技术。特别是随着ip业务逐渐成为网络的主导业务后,这种对jp业务最理想的传送技术将会成为未来网络特别是骨干网的主导传送技术。

(六)解决全网瓶颈的手段一光接入网。

近几年,网络的核心部分发生了翻天覆地的变化,无论是交换,还是传输都己更新了好几代。不久,网络的这一部分将成为全数字化的、软件主宰和控制的、高度集成和智能化的网络,而另一方面,现存的接入网仍然是被双绞线铜线主宰的(90%以上)、原始落后的模拟系统。两者在技术上存在巨大的反差,制约全网的进一步发展。为了能从根本上彻底解决这一问题,必须大力发展光接入网技术。因为光接入网有以下几个优点:

(1)减少维护管理费用和故障率;

(2)配合本地网络结构的调整,减少节点,扩大覆盖;

(3)充分利用光纤化所带来的一系列好处;

(4)建设透明光网络,迎接多媒体时代。

参考文献:

简述光纤通信技术的现状与形势论文

在进入新世纪以来,光纤通信技术如雨后春笋般快速成长起来,尤其是光纤接入网技术及波分复用技术的突破,大大提高了我们人类信息通信交流的质量。

光纤接入网技术是人类进入21世纪以来对信息传输技术的一个全新尝试,并对其进行成功突破,从而实现了我们人类信息的高速度化传输,满足了我们人类日益提高的文化生活。

光纤接入网技术主要由两个部分组成,即宽带的主干传输网络和用户接入两本主要部门组成,其中用户接入技术最为关键,它是光纤接入的最后一个环节,主要负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。

第二,就是光纤通信技术中的波分复用相关的技术,在现代技术领域中,科技人员已经对其取得了相当大的突破,并取得了一些令人满意的效果。

利用波分复用器,就可以降低光纤损耗,获得了大的带宽资源。

第三,就是在当今光纤通信技术中的光放大技术已经获得重大突破,光放大器的开发成功及其产业化是光纤通信技术中的一个非常重要的成果,它大大地促进了光复用技术、光孤子通信以及全光网络的发展。

顾名思义,光放大器就是放大光信号。

在此之前,传送信号的放大都是要实现光电变换及电光变换,即o/e/o变换。

有了光放大器后就可直接实现光信号放大。

从现代通信的发展趋势来看,光纤通信也将成为未来通信发展的主流,与其他行业相比,光纤通信更具有特殊意义,在未来信息社会中将起到重要作用。

光纤通信技术的发展目标是超大容量、超长距离的传输与交换技术和全光网络技术。

[参考文献]。

简述光纤通信技术的现状与形势论文

光纤通信技术的使用提高了信息传递的效率,不论是传输质量,传输容量还是传输速度都得到了改善。光纤通信质量轻、损耗低、安全可靠、抗干扰性强,在不同领域都已经普及应用,特别是在服务与生产行业的应用十分普遍。

光纤通信是将光作为信息的承受载体,将光纤作为传输的通信方式[1]。光纤作为一种新型的传输介质,其损耗相对于同轴电缆或导波管来说要低出许多。因此,在实际使用过程中光纤通信的容量要对于微波通信来说要大出几十倍。如图1所示为光纤结构图。光纤通信技术在实际使用过程中拥有其独特的特点:第一,通信容量较大。光纤通信在使用过程中由于传输速度与质量相对于其他电缆与铜线来说拥有显著的优势。光纤通信技术利用光源调制的特殊性、调制的方式以及光纤是色散特性使得明显改善了光纤通信的质量。同时,光纤通信在运用时中单波长光纤通信系统可以最大程度的发挥光纤通信的效用,显著提升其传输容量。第二,传输损耗较低。一般石英光纤损耗大约在0-20db/km左右,这一水平的传输损耗远远低于其他介质[2]。因此,可以判断石英光纤损耗是一种明显的低消耗材料。在跨度更多的无中继距离传输中可以显著减少损耗。伴随着中继站数量的不断减少,系统的成本与复杂性得到了降低,光纤通信在长途传输的过程中可以发挥最大的使用效益,降低经济成本。第三,保密性良好。光纤通信中的广播可以提升光波导结构的各项效果。光纤通信技术能够将信号完整的封存在光波导结构当中,有可能泄露的射线都将被不透明包皮吸收。这一方式不会导致光波泄露,同时光纤在传输过程中也不会出现串音干扰,光纤通信的内容将拥有较高的保密性。

电力通信工作主要是为对电网进行日常运营管理,以保证电网能够正常顺利运作。在电网工作中电力通信是其中的技术基础,其能够为电网正常提供电力以及电力系统的正常应用提供充分的保障。光纤通信技术一般是在电力通信的架空、地埋等不同方式来敷设光缆,从而打造电力光纤通信体系。光纤通信技术的信息传输容量大,传输过程中的损耗较低,传输安全性良好,受到了电力通信行业的欢迎。光纤通信技术的装备设施可以在使用专用光纤的同时兼容普通光纤的使用。专用光纤有全介质自承光缆、金属自承光缆等等。

2.2光纤通信在智能交通领域中的应用。

智能交通主要是针对交通行业的各类信息进行统计管理,其主要工作任务就是对各类数据信息进行归纳收集,传输与处理。光纤通信技术可以在智能交通管理方面进行互联网的收费工作,对各个路段的监控录像、语音的传输方面进行传输,通过计算机技术、通信技术等来帮助辅助智能交通行业的发展。光纤通信为公路、铁路大容量数据的快速、准确、安全传输提供了有效的.保障[3]。

2.3光纤通信在广播电视中的应用。

在广播电视行业光纤通信的应用范围十分广泛。广播电视节目的播放、信号传输等都需要通过光纤通信作为传输介质。光纤通信在广播电视行业中的使用获得了十分理想的效果。通过光纤网络进行电视直播信号的传输,显著优化了以往电视信号利用微波传播进行输送时存在的噪音干扰,有效改善了信号的完整性与可靠性。而光纤通信网络的体积小、质量轻、损耗低、容量大、安全性强、保密性好、抗干扰性良好,成本低等特点成为了广播电视中的主要传输方式。

在互联网中光纤通信的应用是十分普及的,其成为了光纤通信优势效用最为突出的方面。由于光纤通信自身拥有的特点,使得用户在访问互联网时的速度得到了显著的提升。由于光纤通信在传输过程中损耗较低,因此在进行数字转化的过程中清晰度也得到了提升,改善了传统通信方式的缺陷。互联网中光信号转化为数字信号可以使得信号更加准确。

结束语。

光纤通信技术的快速发展推动了我国社会不同行业的信息化发展。伴随着光纤通信技术的成熟与发展,其已经成为了现代化信息传输过程中不可或缺的部分。光纤通信在电力通信、智能交通、广播电视以及互联网中的应用将会得到延续,光纤通信技术的应用领域也必然会越来越广泛。

参考文献。

[1]罗代俊.电力通信背景下的光纤通信技术应用研究[j].电子技术与软件工程,,(22):42+127.

[2]何召舜.浅论光纤通信技术的特点和发展趋势[j].中小企业管理与科技(上旬刊),,(03):248.

简述光纤通信技术的现状与形势论文

(1)扩大单一波长的传输容量。目前,单一波长的传输容量已达到40gbit/s,并进行160gbit/s的研究。40gbit/s以上传输对光纤的pmd提出一定要求。(2)实现超长距离传输。无中继传输是骨干传输网的理想,目前一些公司已采用色散齐理技术,实现-5000km的无电中继传输;有的采用拉曼光放大技术,更大地延长光传输距离。(3)适应dwdm技术的运用。目前运用32×2.5gbit/sdwdm系统,该系统对光纤的非线性指标提出了更高要求;itu-t对光纤的非线性属性及测试方法的标准(g.650.2)已完成,对光纤的有效面积提出相应指标,对g.655光纤的非线性特性会有改善。

2.新型光纤产品的不断出现。

(1)用于长途通信的新型大容量长距离光纤。康宁公司推出的puremodepm系列新型光纤,利用了偏振传输和复合包层,用于10gbit/s以上的dwdm系统中,很适合于拉曼放大器的开发与应用。alcatelcable推出的teralightultra光纤,已有传输100km长度以上单信道40gbit/s、总容量10.2tbit/s的记录。一些公司开发负色散大有效面积的'光纤,提高了非线性指标的要求,简化了色散补偿方案,在长距离无再生传输和海底光缆长距离通信中效果很好。

(2)用于城域网通信的新型低水峰光纤。在城域网设计中,要考虑简化设备、降低成本和非波分复用技术应用的可能性。低水峰光纤在1360-1460nm的延伸波段使带宽被大大扩展,使cwdm系统被优化,增大了传输信道、增长了传输距离。一些城域网设计,要求光纤的水峰低和具有负色散值,可抵消光源光器件的正色散,可组合运用这种负色散光纤与g.652光纤或g.655标准光纤,利用它来做色散补偿,避免色散补偿设计,节约成本。

(3)用于局域网的新型多模光纤。随着局域网、用户住地网的高速发展,大量综合布线系统采用多模光纤代替数字电缆,多模光纤市场份额逐渐加大。选用多模光纤,是因为局域网传输距离较短,虽然多模光纤比单模光纤价格贵50%-100%,但它所配套的光器件可选用发光二极管,价格比激光管便宜,且多模光纤有较大的芯径与数值孔径,易连接与耦合,相应的连接器、耦合器等元器件价格也低。itu-t至今未接受62.5/125μm型多模光纤标准,因局域网发展的需要,它仍然得到了广泛使用。而itu-t推荐的g.651光纤,即50/125μm的标准型多模光纤,其芯径较小、耦合与连接困难一些。针对此问题,有的公司进行了改进,研制出新型的5o/125μm光纤渐变型(g1)光纤,区别于传统的50/125μm光纤纤芯的梯度折射率分布,将带宽的正态分布进行了调整,以配合850nm和1300nm两个窗口的运用。

3.光缆技术发展的特点。

(1)光缆结构使用网络环境有明确的光纤类型选择,如干线网光纤、城域网光纤等,这决定了大范围内光缆光纤传输特性的要求,具体运用的条件,还有可依据的细分的标准及指标。(2)光缆结构除考虑光缆使用环境条件外,与其施工和维护方法有关,必须统一考虑,配套设计。(3)光缆新材料的出现,促进了光缆结构改进,如干式阻水料、纳米材料、“干缆芯”式、生态光缆、海底和浅水光缆、微型光缆、全介质自承式光缆、架空地线光缆等的采用,使光缆性能有明显改进。

二、光纤光缆技术发展值得思考的问题。

1.积极创新开发具有自主知识产权的新技术。以来,国内光通信核心技术专利是90件,自主申请的有9件。作为世界第二光缆大国,应该把开发具有自主知识产权的技术,作为工作的重中之重,争取创造更多的光纤光缆专利。

2.开发具有先进技术水平、与使用环境、施工技术相配套的新产品。光缆的结构依赖于使用的环境条件和施工的具体要求,今后,光缆建设的重点将会随着接入网、用户住地网的建设不断展开,新一代的光缆结构和施工技术会基于,如微型光缆、吹入或漂浮安装,及迷你型微管或小管系统的全套技术,有一系列新的变化,充分利用有限的敷设空间。目前我国创新的成份太少,在接入网、用户住地网中,多采用一些国产的光电缆产品。

3.利用已有设备和技术,改善hya市话电缆的相应特性,为数字业务提供更好的服务。对于已经敷设的铜电缆,只能在现有条件下,利用其特性开通数字新业务。现有的hya电缆,虽然可开通adsl等一些新业务,但容量有限,当adsl数量增大到一定限度后会出现干扰问题,影响以前开通的业务。因此,对新敷设的铜电缆,希望能提出一些新的宽带指标要求,为将来开通更多的新业务作好准备。

4.改进光缆电缆的施工和维护方法。为适应城市施工的特点,国际上重视不挖沟的方式施工光、电缆,采用小地沟或微地沟技术安装光缆,对光缆网进行自动监测,保证光缆网络不中断通信维护,需要开发相应的元器件、工具和设备。itu对nh开发光缆用浸水传感器、光纤自动测试时的光纤选择器,以及美国提出的1s告警、3min内定位的指标,及意大利提出的光纤纤芯与光缆护套指标,综合监测等方案都十分重视。为保证光缆网络工作的可靠性,在施工和维护中降低成本、节省劳力和时间,推广新的施工方法,完善光缆网络的自动监测维护系统,提高光缆网络的不中断维护水平已势在必行。

5.抓住西部大开发的大好机遇,发展光缆电缆技术和产业。西部大开发是国家的重大策略,国家制定了有利的政策,政府对发展通信等行业给予了大力支持。西部是一个地域复杂、分布较宽、通信相对落后的地区。经济大发展,通信要先行,需要一些与之相适应的光纤光缆及通信电缆的先进产品来配合发展的需求。因此,符合条件的产品会大有市场。西电东送、西气东输等大型工程需要大量的、高质量的adss、opgw等型式的光缆及各种电缆相配套。光纤光缆和通信电缆的各种技术、产品及成果,都会在西部开发中得到发挥。同时西部现代化建设,对产品提出了许多新的难题,光纤光缆和电缆行业也会得到更好的改造和创新的机会,促进自身技术水平的提升和发展。

虚拟实验对光纤通信技术实践教学的应用论文

引言:

现阶段的发展过程中,光纤通信是通过石英光纤组成,使用的时候是以长波长单模光纤应用为主,在对光纤的使用中,其主要性能就有损耗以及色散和非线性,应用在有线电视网络当中,就能消除oh-峰引起的负面效应。加强光纤通信技术的应用水平的提高,对有线电视网络的复制质量提高就有着积极作用。

光纤的性质就是频带宽以及信号质量高等,所以在实际的有线电视网络当中进行应用,就能发挥积极作用,提高电视网络的服务质量。在光纤通信技术的应用原理方面,是相对比较简单的,每根光纤都有着导光芯线以及阻光包层,而导光的芯线是能够让光线通过的,阻光的包层就是防止光线溢出的,光纤在这些纤维当中传播。纤维两端分别加上光发射机以及接收机,这样就能组成比较简单化的光传输网络[1]。结合传送不同信息的需要,就能在光发射机输入端采用多种方式改变光发射机输入端,也能采用不同方法改变光发射机光强度。在光纤通信技术的实际应用当中,对其传输的距离有着影响的因素中,材料是重要的影响因素,还有不同波长光纤引起的衰减以及色散的问题。

光纤通信技术在有线电视网络当中进行应用,就有着不同的结构,其中的光纤到干线的应用结构就是比较常见的。主要是将长距离电缆干线分成诸多短的干线,然后分别和各自光结点进行连接,这样能保留原电缆网络。而光接收机能放置在原主干站中,这一方法能使得网络级联数减少到三到四级,对干线的性能也能得以有效改善[2]。在对这一结构的应用方面,对旧网改造应用是比较突出的,而在新网的建设当中也能进行应用。另外,有线电视中对光纤通信技术的应用结构方面,在光纤至馈线的结构方面也能鲜明呈现。主要是光纤代替了全部电缆干线,没有干放主站,在每条分支线上只有两到三个线路延长放大器,而用户端能保持良好的信号质量,对网络升级的利用以及综合服务的开展都比较有利,这一技术结构在新网的建设当中应用比较多。

光纤通信技术在有线电视网络中的应用,要注重方法的科学性。将光纤通信技术应用在传输高清数据上,对用户购买率的提高就有着促进作用。传输高清数据就是在相应技术应用下,结合之前所获得的电视信号资料,能预先获得电视信号特征,在这些特征下制定电视信号管理策略。光纤通信技术对有线电视信号市场风格,以及应力能力的分析能提供技术支持。对相关技术的应用下进行构建有线电视信号利润回报预期模型比较有利,也能直接作用于交易结果。在对光纤通信技术的实际应用当中,就要能结合光纤通信理论以及现实的相关情况,对有限电视信号实际购买行为进行精确判断和细分,来选择目标市场。光纤通信技术在有线电视网络的应用中,对提高用户的信号满意度有着积极作用。基于光纤通信技术的传输量大和传输过程稳定的特征,在对光纤通信技术的应用下,就能有助于促进电视网络的质量,在用户对电视的信号满意度上能有效提高。针对可能流失的有线电视用户的维护就有着积极作用[3]。在对这一技术的应用下,要实现有线电视网络信号的质量,就要对大量数据进行分析,甄选有价值用户需要的信息,对现在的信号收视数据要进行相应的筛选,以及对那些已经流失的有线电视用户,对其流失的原因能详细分析,这些都有助于一高有线电视网络的服务质量。光纤通信技术的应用对数据传输量的提高有着积极促进作用。高品质硬件基础能提高数据的传输量,对数据的传输效率提高起到积极促进作用。光纤通信技术的实际应用当中,对有线电视的事业发展也有着积极意义,能有效降低日常维护以及反馈的压力,在用户和电视信号间的需求隶属和作出最佳销售匹配也有着积极作用,从而实现公司的最大化利益目标。

结语。

总之,保障光纤通信技术在有线电视网络中的应用质量水平提高,就要从具体的事情落实好。在现阶段的发展过程中,人们对光纤通信技术的应用需求也在进一步加大,而在有线电视网络和光纤通信技术的结合,对提高有线电视网络的整体质量水平就能起到促进作用,在本文对光纤通信技术的应用研究下,就能有助于实际有点电视网络的服务质量提高。

参考文献。

[1]张振杰,巩锐.浅谈光纤通信技术的特点和发展趋势[j].中国新通信.(24)。

[2]黄洪州.当前光纤通信技术的现状与发展前景分析[j].信息通信.(06)。

[3]吕晓东,张勇.光纤通信技术特征与发展趋势探析[j].信息化建设.2016(07)。

虚拟实验对光纤通信技术实践教学的应用论文

光纤通信技术的使用提高了信息传递的效率,不论是传输质量,传输容量还是传输速度都得到了改善。光纤通信质量轻、损耗低、安全可靠、抗干扰性强,在不同领域都已经普及应用,特别是在服务与生产行业的应用十分普遍。

光纤通信是将光作为信息的承受载体,将光纤作为传输的通信方式[1]。光纤作为一种新型的传输介质,其损耗相对于同轴电缆或导波管来说要低出许多。因此,在实际使用过程中光纤通信的容量要对于微波通信来说要大出几十倍。如图1所示为光纤结构图。光纤通信技术在实际使用过程中拥有其独特的特点:第一,通信容量较大。光纤通信在使用过程中由于传输速度与质量相对于其他电缆与铜线来说拥有显著的优势。光纤通信技术利用光源调制的特殊性、调制的方式以及光纤是色散特性使得明显改善了光纤通信的质量。同时,光纤通信在运用时中单波长光纤通信系统可以最大程度的发挥光纤通信的效用,显著提升其传输容量。第二,传输损耗较低。一般石英光纤损耗大约在0-20db/km左右,这一水平的传输损耗远远低于其他介质[2]。因此,可以判断石英光纤损耗是一种明显的低消耗材料。在跨度更多的无中继距离传输中可以显著减少损耗。伴随着中继站数量的不断减少,系统的成本与复杂性得到了降低,光纤通信在长途传输的过程中可以发挥最大的使用效益,降低经济成本。第三,保密性良好。光纤通信中的广播可以提升光波导结构的各项效果。光纤通信技术能够将信号完整的封存在光波导结构当中,有可能泄露的射线都将被不透明包皮吸收。这一方式不会导致光波泄露,同时光纤在传输过程中也不会出现串音干扰,光纤通信的内容将拥有较高的保密性。

电力通信工作主要是为对电网进行日常运营管理,以保证电网能够正常顺利运作。在电网工作中电力通信是其中的技术基础,其能够为电网正常提供电力以及电力系统的正常应用提供充分的保障。光纤通信技术一般是在电力通信的架空、地埋等不同方式来敷设光缆,从而打造电力光纤通信体系。光纤通信技术的信息传输容量大,传输过程中的损耗较低,传输安全性良好,受到了电力通信行业的欢迎。光纤通信技术的装备设施可以在使用专用光纤的同时兼容普通光纤的使用。专用光纤有全介质自承光缆、金属自承光缆等等。

智能交通主要是针对交通行业的各类信息进行统计管理,其主要工作任务就是对各类数据信息进行归纳收集,传输与处理。光纤通信技术可以在智能交通管理方面进行互联网的收费工作,对各个路段的监控录像、语音的传输方面进行传输,通过计算机技术、通信技术等来帮助辅助智能交通行业的发展。光纤通信为公路、铁路大容量数据的快速、准确、安全传输提供了有效的.保障[3]。

在广播电视行业光纤通信的应用范围十分广泛。广播电视节目的播放、信号传输等都需要通过光纤通信作为传输介质。光纤通信在广播电视行业中的使用获得了十分理想的效果。通过光纤网络进行电视直播信号的传输,显著优化了以往电视信号利用微波传播进行输送时存在的噪音干扰,有效改善了信号的完整性与可靠性。而光纤通信网络的体积小、质量轻、损耗低、容量大、安全性强、保密性好、抗干扰性良好,成本低等特点成为了广播电视中的主要传输方式。

在互联网中光纤通信的应用是十分普及的,其成为了光纤通信优势效用最为突出的方面。由于光纤通信自身拥有的特点,使得用户在访问互联网时的速度得到了显著的提升。由于光纤通信在传输过程中损耗较低,因此在进行数字转化的过程中清晰度也得到了提升,改善了传统通信方式的缺陷。互联网中光信号转化为数字信号可以使得信号更加准确。

结束语。

光纤通信技术的快速发展推动了我国社会不同行业的信息化发展。伴随着光纤通信技术的成熟与发展,其已经成为了现代化信息传输过程中不可或缺的部分。光纤通信在电力通信、智能交通、广播电视以及互联网中的应用将会得到延续,光纤通信技术的应用领域也必然会越来越广泛。

参考文献。

[1]罗代俊.电力通信背景下的光纤通信技术应用研究[j].电子技术与软件工程,,(22):42+127.

[2]何召舜.浅论光纤通信技术的特点和发展趋势[j].中小企业管理与科技(上旬刊),,(03):248.

[3]刘权.电力通信中光纤通信技术的应用和影响探究[j].科技创新与应用,,(02):56.

光纤通信技术的应用及发展趋势论文

引言:

现阶段的发展过程中,光纤通信是通过石英光纤组成,使用的时候是以长波长单模光纤应用为主,在对光纤的使用中,其主要性能就有损耗以及色散和非线性,应用在有线电视网络当中,就能消除oh-峰引起的负面效应。加强光纤通信技术的应用水平的提高,对有线电视网络的复制质量提高就有着积极作用。

光纤的性质就是频带宽以及信号质量高等,所以在实际的有线电视网络当中进行应用,就能发挥积极作用,提高电视网络的服务质量。在光纤通信技术的应用原理方面,是相对比较简单的,每根光纤都有着导光芯线以及阻光包层,而导光的芯线是能够让光线通过的,阻光的包层就是防止光线溢出的,光纤在这些纤维当中传播。纤维两端分别加上光发射机以及接收机,这样就能组成比较简单化的光传输网络[1]。结合传送不同信息的需要,就能在光发射机输入端采用多种方式改变光发射机输入端,也能采用不同方法改变光发射机光强度。在光纤通信技术的实际应用当中,对其传输的距离有着影响的因素中,材料是重要的影响因素,还有不同波长光纤引起的衰减以及色散的问题。

光纤通信技术在有线电视网络当中进行应用,就有着不同的结构,其中的光纤到干线的应用结构就是比较常见的。主要是将长距离电缆干线分成诸多短的干线,然后分别和各自光结点进行连接,这样能保留原电缆网络。而光接收机能放置在原主干站中,这一方法能使得网络级联数减少到三到四级,对干线的性能也能得以有效改善[2]。在对这一结构的应用方面,对旧网改造应用是比较突出的,而在新网的建设当中也能进行应用。另外,有线电视中对光纤通信技术的应用结构方面,在光纤至馈线的结构方面也能鲜明呈现。主要是光纤代替了全部电缆干线,没有干放主站,在每条分支线上只有两到三个线路延长放大器,而用户端能保持良好的信号质量,对网络升级的利用以及综合服务的开展都比较有利,这一技术结构在新网的建设当中应用比较多。

光纤通信技术在有线电视网络中的应用,要注重方法的科学性。将光纤通信技术应用在传输高清数据上,对用户购买率的提高就有着促进作用。传输高清数据就是在相应技术应用下,结合之前所获得的电视信号资料,能预先获得电视信号特征,在这些特征下制定电视信号管理策略。光纤通信技术对有线电视信号市场风格,以及应力能力的分析能提供技术支持。对相关技术的应用下进行构建有线电视信号利润回报预期模型比较有利,也能直接作用于交易结果。在对光纤通信技术的实际应用当中,就要能结合光纤通信理论以及现实的相关情况,对有限电视信号实际购买行为进行精确判断和细分,来选择目标市场。光纤通信技术在有线电视网络的应用中,对提高用户的信号满意度有着积极作用。基于光纤通信技术的传输量大和传输过程稳定的特征,在对光纤通信技术的应用下,就能有助于促进电视网络的质量,在用户对电视的信号满意度上能有效提高。针对可能流失的有线电视用户的维护就有着积极作用[3]。在对这一技术的应用下,要实现有线电视网络信号的质量,就要对大量数据进行分析,甄选有价值用户需要的信息,对现在的信号收视数据要进行相应的筛选,以及对那些已经流失的有线电视用户,对其流失的原因能详细分析,这些都有助于一高有线电视网络的服务质量。光纤通信技术的应用对数据传输量的提高有着积极促进作用。高品质硬件基础能提高数据的传输量,对数据的传输效率提高起到积极促进作用。光纤通信技术的实际应用当中,对有线电视的事业发展也有着积极意义,能有效降低日常维护以及反馈的压力,在用户和电视信号间的需求隶属和作出最佳销售匹配也有着积极作用,从而实现公司的最大化利益目标。

总之,保障光纤通信技术在有线电视网络中的应用质量水平提高,就要从具体的事情落实好。在现阶段的发展过程中,人们对光纤通信技术的应用需求也在进一步加大,而在有线电视网络和光纤通信技术的结合,对提高有线电视网络的整体质量水平就能起到促进作用,在本文对光纤通信技术的应用研究下,就能有助于实际有点电视网络的服务质量提高。

光纤通信技术简介

结课论文。

入学年级2011级所在班级通信1班。

学生姓名韩秉宏。

学号1167119127指导教师张宝华。

【正文】。

早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。1880年贝尔发明了光电话。但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。

1960年7月8日美国科学家梅曼(maiman)发明了世界上第一台红宝石激光器。激光器发出的激光与普通光源发出的光相比,其光束的强度极高,方向性极好,是一种理想的通信载波。后来各种不同的激光器相继出现,但是当时人们还没有一种好的传送光波的介质。然而大气光通信虽然在机动性,灵活性方面具有优势,适合于大气层视觉范围,星际之间,水下等特殊场合的通信,但用于长距离的陆地海底通信显然是不理想的。正在许多人为光通信的前途表示担忧时,英国标准远程通信实验室的英籍华人高锟博士()提出了大胆的设想,他认为电可以沿着导电的金属向前传输,那么光也可以沿着导光的玻璃纤维,即光导纤维传输,这就开启了光纤通信的大门。

20世纪60年代,光导纤维的损耗很大,使得光通信的传输距离限制在短距离内。1970年纽约康宁(corning)玻璃厂的kapron,keck和mmaarer发明了一种低损耗光纤,这是光通信在实际应用中的又一重大突破。这种采用光导纤维来传送光波的通信就是现在所说的光纤通信。自此以后各种低损耗的光纤如雨后春笋般地出现,这为光纤通信打下良好的基础。就在对光纤损耗的研究获得巨大突破的同时,美国贝尔实验室于1970年研制成功了可在室温连续工作的半导体激光器。半导体激光器体积小,耗电少,通过注入电流可方便的实现对信号的调制,具有寿命长可靠性高等优点。至此,可以说光纤通信向实用化发展的两大障碍——没有良好的光源和理想的传输介质,都得到了圆满的解决。此后各种各样的光纤通信系统就很快地发展起来了。

1976年,在美国亚特兰大成功的进行了速率为44.7mb/s的光纤通信系统实验。

1977年,美国芝加哥电话局进行了速率为44.7mb/s的光纤通信系统的现场实验。1978年,日本进行了速率为100mb/s的光纤通信系统现场实验。

1980年,日本进行了速率为400mb/s的光纤通信系统现场实验。

1989年,itu-t(美国电信联盟电信委员会)制定了155mb/s,622mb/s,2.5gb/s等sdh速率标准。

自1982年以后,光纤通信迅速发展,促进了光纤的应用和产业化,光纤的需求量呈指数规律上升。无论是在陆地,还是在海底都敷设了光纤光纤已经延伸到我们的办公桌和家中。光纤已成为高质量信息传输的主要手段。

光纤通信之所以被广泛应用,就是它有一定的优越性,当然它也有不足之处。下面说一下它的特点。

(1)通信容量大。由于光纤的可用带宽较大,一般在10ghz以上使光纤通信系统具。

有较大的通信容量。而金属电缆存在的分布电容和分布电感实际起到了低通滤波。

器的作用,使传输频率,带宽以及信息承载能力受到限制。现代光纤通信系统能。

够将速率为几十gb/s以上的信息传输上百英里,允许大约数百万条话音和数据。

信道同时在一根光缆中传输。实验室里,传输速度达tb/s级的系统已研制成功。

光纤通信巨大达信息传输能力,使其成为了信息传输的主体。

(2)传输距离长。光缆的传输损耗比电缆低,因而可传输更长的距离。光纤系统仅需。

要少量的中继器,而光缆与电缆的造价基本相同,少量的中继器使光纤系统的总。

成本比相应的金属电缆通信系统的要低。

(3)抗电磁干扰。光纤通信系统避免了电缆间由于相互靠近而引起的电磁干扰。金属。

电缆发生干扰的主要原因就是金属导体向外泄漏电磁波。由于光纤的材料是玻璃。

或塑料,都不导电,因而不会发生电磁波的泄漏,也就不存在相互之间的电磁干。

扰。

(4)抗噪声干扰。光纤不导电的特性还避免了光缆受闪电,电机,荧光灯及其他电器。

元件的电磁干扰,外部的电噪声也不会影响光波的传输能力。此外,光缆不辐射。

射频能量的特性也使它不会干扰其他通信系统,这在军事上的运用时非常理想的而其他种类的通信系统在核武器的影响下(电磁脉冲干扰)会遭到毁灭性的破坏。

(5)适应环境。光纤对恶劣环境有较强的抵抗能力。它比金属电缆更能适应温度的变。

化,而且腐蚀性的液体或气体对其影响较小。

体积小,重量轻更便于机载工作,而且它占用的储存空间小,运输也方便。

(7)保密性好。由于光纤不向外辐射能量,很难用金属感应器对光缆进行窃听,因此。

它比常用的铜缆保密性强。

(8)寿命长。尽管还没得到证实,但可以断言,光纤通信系统远比金属设施的使用寿。

命长,因为光缆具有更强的适应环境变化和抗腐蚀的能力。

(9)原材料来源丰富,潜在价格低廉。制造石英光纤的最基本原料是二氧化硅,即砂。

子,而砂子在大自然中几乎是取之不尽用之不竭。因此潜在价格是十分低廉的。

光纤通信的潜力是巨大的,目前的光纤通信应用水平据分析仅仅是其水平的1%—2%左右。光纤通信作为现代通信的主要支柱之一,在现代通信网中起着重要的作用。光纤通信具有以下几个发展趋势:

波长的光波,并由合波器合成一束光波进行传输,而在接受端用分波器把几种光波。

分离开,分别输入到各个分系统的光接收机。

(2)相干光通信。所谓相干光通信,就是在发端由激光器发出谱线级窄,频率稳定,相。

器上进行混频与差频,然后把差频后的中频光信号进行放大,检波。相干光通信技。

术一则可以增大光纤的传输容量,二则可以大大提高光接收机的灵敏度。

(3)超长波长光纤通信。为了实现越来越大的信息容量和超长距离传输,必须使用低损。

耗和低色散的单模光纤。所谓单模光纤,就是光纤中只存在一种模式(由光纤导引。

沿光纤轴线向前传播的电磁波),光源耦合进光纤的能量以该模式向前传输。光源发。

有差异。如果用单模光纤就不一样了,它可以减少损耗,色散,这样一来传输距离。

就不是问题了。

(4)光集成技术。它和电子设计中的集成电路相似,是把许多微型光学元件,如光源器。

件,光检测器件,光透镜,光滤波器等集成在一块很小的芯片上,构成具有复杂性。

能的光器件;还可以和集成电路等电子元件集成在一起形成更复杂的光电部件,如。

光发送机和光接收机等。采用光集成技术,不仅使设备的体积,重量大大减小,而。

且提高了稳定性欲可靠性。

可以实现超大容量的光纤通信。

更进一层楼。结束语。

总之,光纤通信技术在以后的发展中会走向更高的水平,也会为我们的生活带来更大的方便。通过这段时间的学习,我也认识到现在通信行业的发展前景非常可观,也可能有新的技术加入到通信行业。由最近几年的发展可知,光纤通信在以后的通信中将占到更高的地位。但是这也不能说明其他通信方式就会停止发展或者被取代,毕竟光纤也有自己的不足。由此可知,以后的通信将趋向于多元化,各种通信技术的综合应用,这样不仅带动了各种通信技术的发展,也使我们的选择多样化,生活多样化。

【参考文献】。

[1]光纤通信技术/顾生华主编。—北京:北京邮电大学出版社,2004。

[2]光纤通信/张宝富等编著。—西安:西安电子科技大学出版社,2004.2。

[3]光纤通信/彭利标主编。—北京:机械工业出版社,2007.3。

[4]光纤通信技术/王加强编著。—武汉:武汉大学出版社,2007.8。

[5]光纤通信简明教程.袁国良.北京.清华大学出版社,2006.12。

浅谈电信光纤通信技术

光纤通信是指以光作为载体,利用光纤作为媒介进行信息传输的通信技术。1966年高琨博士发表了一篇论文,提出光学纤维可以作为信息传输媒介,由此开创了光纤通信的研究。但是在当时玻璃丝的损失太大,以至于人们普遍不相信利用光纤可以通信。美国bell实验室与康宁公司合作,研制了3根损失为20db/km的光纤,因为他们相信由于光的频率和带宽是电信号的千万倍,因此理论上它是可以用来进行高质量通信的,然而当时由于光源及其它因素的影响,光纤并没有能给人们惊喜,直到后来美国研制出通信激光器,人们才体会到光纤通信的巨大优势,光纤通信瞬间取代了传统的电子通信,成为风靡全球的通信技术。相较于其它通信手段,光纤通信最大的优势在于其介质是光,这种载体本身的优势使得光纤通信异常优越,主要是频带非常之宽且损耗较低、保密性很强且抗干扰能力强、容量大且速度极快。光作为传播介质,相比电来说其损耗非常低,而光自身的频带也比电宽许多倍,这使得光纤通信具备第一个优势;其次因为光纤通信是在光导结构之中的,而泄露的少数射线也会被包裹层吸收,所以光纤通信的保密性和抗干扰能力都远强于电;另外由于光纤的体积非常小但是光可携带的信息量很大,这使得光纤通信传输速度快且容量大。我国光纤通信发展也较早,在20世纪70、80年代,武汉和北京两地的邮电科学研究院已经开始了研究,由赵梓森牵头的光纤通信事业获得了很大成就,甚至超过欧洲一些国家,为我国的光纤通信事业打下了坚实的基础。到20世纪80、90年代,我国的光缆长度已达250万km,但此时还不能直接使用在今日司空见惯的生活中,近一二十年来,随着经济的发展,我国计算机和信息技术得到了巨大程度的'普及,由此带动了光纤通信的发展,目前已经基本实现了全国的光纤通信式有线网络接入,使我国进入了网络国家的行列[1]。

浅谈电信光纤通信技术

虽然光纤通信技术已经成为主流通信技术,且其优势也已经得到广泛承认,但是随着现代智能的发展,人们对通信的要求越来越高,对于光纤通信来说,人们希望其能实现以下目标。首先是超大容量和超远距离传输,因为人工智能与大数据技术都需要可靠的通信来配合,尤其是大容量与高速度的通信手段,在移动通信领域,5g技术已经准备商用,而有线通信上,我们期待光纤通信能取得新的突破。其次是实现光弧子通信技术,光弧子自身具有大容量、抗干扰能力强等优势,而且它可以实现远距离的传输,因此具有非常高的研究价值,我们希望未来它能取得新的成就[4]。另外就是全光网的实现,这是一种超高质量的通信手段,即通信信息以光形式传播和交换,从信息的来源到各个节点都是在光域中进行,这一目标的实现将会革命性地改变光纤通信。综合来说,光纤通信现在已经取得了巨大的成就,然而随着现代科技发展的速度越来越快,我们希望光纤通信技术也能与时俱进,取得新的成绩。

参考文献。

[1]赵梓森.中国光纤通信发展的回顾[c].光纤发明50周年,,32(5):5-9.

光纤通信技术试题

摘要:光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。本文探讨了光纤通信技术的主要特征及发展趋势,和它以光纤链路为基础的现场测试。

0引言。

光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。

光纤通信技术作为在实际运用中相当有前途的一种通信技术,已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。

十、甚至上百公里。

(2)信号干扰小、保密性能好;。

(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。

(4)光纤尺寸小、重量轻,便于铺设和运输;

(5)材料来源丰富,环境保护好,有利于节约有色金属铜。

(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。

(7)光缆适应性强,寿命长。

(8)质地脆,机械强度差。

(9)光纤的切断和接续需要一定的工具、设备和技术。

(10)分路、耦合不灵活。

(11)光纤光缆的弯曲半径不能过小(20cm)。

(12)有供电困难问题。

(1)光纤通信技术中的光纤接入技术。光纤接入网技术是信息传输技术的一个崭新的尝试,它实现了普遍意义上的高速化信息传输,满足了广大民众对信息传输速度的要求,主要由宽带的主干传输网络和用户接入两部分组成。其中后者起着更为关键的作用,即ftth(意思是光纤到户),作为光纤宽带接入的最后环节,负责完成全光接入的重要任务,基于光纤宽带的相关特性,为通信接收端的用户提供了所需的不受限制的带宽资源。

(2)光纤通信技术中的波分复用技术。即wdm,充分利用了单模光纤低损耗区的优势,获得了大的带宽资源。波分复用技术基于每一信道光波的频率和波长不同等情况出发,把光纤的低损耗窗口规划为许多个单独的通信管道,并在发送端设置了波分复用器,将波长不同的信号集合到一起送入单根光纤中,再进行信息的传输,而接收端的波分复用器把这些承载着多种不同信号的、波长不同的光载波再进行分离。

(1)光接入网通信技术的更进一步发展。现存技术上的接入网依旧是双绞线铜线的连接,仍然是原始的、落后的模拟系统,而网络中的光接入技术的应用使其成为了全数字化的,且高度集成的智能化网络。

光接入网通信技术所要达到的主要目标有:最大程度的使维护费用得到降低,故障率得到明显下降;可以用于新设备的开发和新收入的不断增加;与本地网络相结合,达到减少节点数目和扩大覆盖面范围的目的;通过光网络的建立,为多媒体时代的到来做好准备;另外,可以最大化的利用光纤本身的一些优势特点。

(2)光纤通信技术中光传输与交换技术的融合一光接入网通信技术的后延。基于上述光接入网通讯技术的成熟发展,网络的核心架构己经得到了翻天覆地的改变,并正在日新月异的变化发展着,在交换和传输两方面来讲也都早已进行了好几代的更新。光接入网技术和光输与交换技术的融合技术,前者较后者在技术应用上有了一些技术上改进,从而也就提高了全网的往前的进一步有效发展,但此项技术相对来讲仍不成熟。

(3)新一代的光纤在光纤通信技术中的应用。传统意义上的g.652单模光纤已经在长距离且超高速的传送网络发展中表现出了力不从心的缺点,新一代光纤的研发己成为当今务实之需,它也构成了新一代网络基础设施建设工作的一个重要组成部分。在目前普遍需求的干线网和城域网的背景下,基于不同的发展需要,己经发展出了两种新一代光纤一非零色散光纤和全波光纤。

4.1光纤链路现场测试的目的光纤链路现场测试是安装和维护光纤网络的必要部分,是确保电缆支持网络协议的一种重要方式。它的主要目的是遵循特定的标准检测光纤系统连接的质量,减少故障因素以及存在故障时找出光纤的故障点,从而进一步查找故障原因。

4.2光纤链路现场测试标准。

目前光纤链路现场测试标准分为两大类:光纤系统标准和应用系统标准。(1)光纤系统标准:光纤系统标准是独立于应用的光纤链路现场测试标准。对于不同光纤系统,它的测试极限值是不固定的,它是基于电缆长度、适配器和接合点的可变标准。目前大多数光纤链路现场测试使用这种标准。世界范围内公认的标准主要有:北美地区的eia/tia—568—b标准和国际标准化组织的iso/iec11801标准等。(2)光纤应用系统标准:光纤应用系统标准是基于安装光纤的特定应用的光纤链路现场测试标准。每种不同的光纤系统的测试标准是固定的。常用的光纤应用系统有:100base—fx、1000base—sx等。

4.3光纤链路现场测试过程。

对于光纤系统需要保证的是在接收端收到的信号应足够大,由于光纤传输数据时使用的是光信号,因此它不产生磁场,也就不会受到电磁干扰和射频干扰,不需要对next等参数进行测试,所以光纤系统的测试不同于铜导线系统的测试。

输容量、传输距离、信号质量等有着重大影响。但由于光纤的色散、截止波长、模场直径、基带响应、数值孔径、有效面积、微弯敏感性等特性不受安装方法的有害影响,它们应由光纤制造厂家进行测试,不需进行现场测试。

在eia/tia—568—b中规定光纤通信链路现场测试所需的单一性能参数为链路损失(衰减)。

(1)光功率的测试:对光纤工程最基本的测试是在eia的fotp-95标准中定义的光功率测试,它确定了通过光纤传输的信号的强度,还是损失测试的基础。测试时把光功率计放在光纤的一端,把光源放在光纤的另一端。

(2)光学连通性的测试:光纤系统的光学连通性表示光纤系统传输光功率的能力。光纤系统的光学连通性是对光纤系统的基本要求,因此对光纤系统的光学连通性进行测试是基本的测试之一。通过在光纤系统的一端连接光源,在另一端连接光功率计,通过检测到的输出光功率可以确定光纤系统的光学连通性。当输出端测到的光功率与输入端实际输入的光功率的比值小于一定的数值时,则认为这条链路光学不连通。进行光学连通性的测试时,通常是把红色激光或者其他可见光注入光纤,并在光纤的末端监视光的输出。如果在光纤中有断裂或其他的不连续点,在光纤输出端的光功率就会下降或者根本没有光输出。

(3)光功率损失测试:光功率损失这一通用于光纤领域的术语代表了光纤链路的衰减。衰减是光纤链路的一个重要的传输参数,它的单位是分贝(db)。它表明了光纤链路对光能的传输损耗(传导特性),其对光纤质量的评定和确定光纤系统的中继距离起到决定性的作用。光信号在光纤中传播时,平均光功率延光纤长度方向成指数规律减少。在一根光纤网线中,从发送端到接收端之间存在的衰减越大,两者间可能传输的最大距离就越短。衰减对所有种类的网线系统在传输速度和传输距离上都产生负面的影响,但因为光纤传输中不存在串扰、emi、rfi等问题,所以光纤传输对衰减的反应特别敏感。

(4)光纤链路预算(olb):光纤链路预算是网络和应用中允许的最大信号损失量,这个值是根据网络实际情况和国际标准规定的损失量计算出来的。一条完整的光纤链路包括光纤、连接器和熔接点,所以在计算光纤链路最大损失极限时,要把这些因素全部考虑在内。光纤通信链路中光能损耗的起因是由光纤本身的损耗、连接器产生的损耗和熔接点产生的损耗三部分组成的。但由于光纤的长度、接头和熔接点数目的不定,造成光纤链路的测试标准不像双绞线那样是固定的,因此对每一条光纤链路测试的标准都必须通过计算才能得出。

虽然目前光通信的容量已经非常大,但仍有大量应用能力闲置,伴随着社会经济和科学技术的进一步发展,对信息的需求也会随之增加,并会超过现在的网络承载能力,因此我们必须进一步努力研究更加先进的光传输手段。因此,在经济社会发展的推动下,光通信一定会有更加长久的发展。

[参考文献]。

[1]王磊,裴丽.光纤通信的发展现状和未来[j].中国科技信息.2006.(4).[2]何淑贞,王晓梅.光通信技术的新飞跃[j].网络电信.2004.(2).[3]辛化梅,李忠.论光纤通信技术的现状及发展.山东师范大学学报.2003.4.[4]李超.浅谈光纤通信技术发展的现状与趋势.沿海企业与科技.2007.7.

浅谈电信光纤通信技术

摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。

引言。

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

浅谈电信光纤通信技术

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十ghz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5gbps到1ogbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

2.2损耗低,中继距离长目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20db/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

2.3抗电磁干扰能力强我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的.免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

2.4光纤径细、重量轻、柔软、易于铺设光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

2.5保密性能好对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人探听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。

光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络a(on)和无源光网络((pon。)采用sdh技术、atm技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(odn全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络p(on)技术是实现ft-tx的主流技术。典型的pon系统由局侧olt光(线路终端)、用户侧onuo/nt(光网络单元)以及odn-orgnizationdevelopmentnetwork(光分配网络)组成。pon技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有ftb、fttc,fttcab和ftth等不同的应用,统称fttx。

ftth(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从起,在“863”项目的推动下,开始了ftth的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了ftth的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为ftth在我国的发展创造了良好的条件。

在ftth应用中,主要采用两种技术,即点到点的p2p技术和点到多点的xpon技术,亦可称为光纤有源接入技术和光纤无源接入技术。p2p技术主要采用通常所说的mc(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供fe或ge的带宽,对大中型企业用户来说,是比较理想的接入方式。

4结束语。

从光纤通信问世到现在,光传输的速率以指数增长,光传输的速率在过去的中大约提高了100倍。层出不穷的光通信新技术将成为市场复苏的源泉,而人类对通信容量的无止境需求将是市场恢复的原动力。随着光通信技术进一步发展,必将对21世纪通信行业的进步,乃至整个社会经济的发展产生巨大影响。

光纤通信技术的发展趋势

讲课老师:樊志刚。

专业:14光电信息科学与工程。

班级:一班。

姓名:魏宁。

学号:2014040461009。

如今进入大数据时代,光纤通信以传输速度快,通信容量大,中继距离长,保密性好等优势逐渐成为现如今的主要传输方式。作为一名大三学生,进行了为期一学期的光纤通信学习,在樊老师的悉心讲解,我对光纤通信的发展有了以下总结:早在中国古代就用“烽火台”报警,欧洲人用旗语传送信息。1880年,美国贝尔发明了用光波作载波传送话音的“光电话”。贝尔光电话是现代光通信的雏形。1960年,梅曼发明第1台红宝石激光器,给光通信带来了新希望。同期,美国麻省理工学院利用he-ne激光器和co2激光器进行了大气激光通信试验。1966年,英籍华人高锟和霍克哈姆发表了关于传输介质新概念论文,指出用光纤进行信息传输可能性和技术途径,奠定了现代光通信——光纤通信基础。

光纤通信发展可以大致分为三个阶段:第一阶段(1966-1976),这是从基础研究到商业应用的开发时期。第二阶段(1976-1986),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。第三阶段(1986-1996),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。

光纤通信有很多优点:比如容许频带很宽、传输容量很大、损耗很小、中继距离很长且误码率很小、重量轻、体积小、抗电磁干扰性能好、泄漏小、保密性能好、节约金属材料、有利于资源合理使用等。如果把通信线路比作马路,那么应该说是通信线路的频带越宽,容许传输的信息越多,通信容量就越大。载波频率越高,频带宽度越宽。光通信利用的传输媒质-光纤,可以在宽波长范围内获得很小的损耗。目前,光纤通信系统使用的光纤多为石英光纤,此类光纤在1.55μm波长区损耗可低到0.18db/km,比已知其他通信线路损耗都低得多,故由其组成的光纤通信系统中继距离也较其它介质构成系统长得多。光纤通信抗干扰原因一是光纤属绝缘体,不怕雷电和高压;二是传输频率极高光波,各种干扰源频率一般都较低,干扰不了高频光。另一种重要干扰源是原子辐射。

目前光纤通信在众多领域都有应用。如:通信网、构成因特网的计算机局域网和广域网、有线电视网的干线和分配网、综合业务光纤接入网。应用于电力系统的监视、控制和管理由于使用了光纤,不受强电磁干扰,不仅信息传输量增大,而且工作更加可靠。传输信息用的光纤,可以放在输电线、地线的中心,不受干扰,施工方便。用电设备观测雷击很困难,因为雷击对电设备也可能造成破坏。而用光纤却可以直接观测雷击现象,观测装置由检测器、光纤和观测记录仪等组成。雷击时位于铁塔上的检测器产生瞬间高电压,由于是光纤传输,对观测记录仪不会造成影响。电监控系统信号为电信号,在含瓦斯高矿井中易引起爆炸。故如考虑安全因素,电信号功率不能太大,这又导致传输距离受限。若采用光纤系统,很多设备可无源化,即保证了安全,又能实现远距离监控。在军事领域战术通信主要有两种系统:一种是本地分配系统,包括战地指挥所的布线,兵器之间的连接,野战计算机的互连,以及基地信息传输系统等;一种是长距离战术通信系统。水下通信系统是扫雷舰与浮游载体间数据传输线路。扫雷舰主要任务是清扫航道水雷,利用浮游载体扫雷最为安全而可靠。扫雷舰与浮游载体间连着3根光纤:一根光纤把水下浮游载体探测到的声纳信号和遥测信号传给舰船;另一根光纤用来传输舰船给水下浮游载体控制信息;第三根光纤备用。光纤反潜战网络,也就是把光纤传输线路与水听器相连,把监测到的敌潜声音信号通过光纤传输到舰上或岸上信息处理中心,以便确定作战方案。光纤用于水下通信,探测的灵敏度高,传输的信息量大,抗各种干扰的能力强,而且重量轻、浮力大。在医学领域利用传光束的照明器和测氧计、利用传像束的内窥镜、激光手术刀等。

光纤是由中心的纤芯和外围包层同轴组成圆柱形细丝。纤芯折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光传输提供反射面和光隔离,并起一定机械保护作用。光纤种类很多,本学期我们学习了作为信息传输波导用的油高纯度石英制成的光纤。实用光纤主要有三种基本类型,第一:突变型多模光纤。第二:渐变型多模光纤。第三:单模光纤。相对于单模光纤而言,突变型和渐变型光纤芯直径都很大,可容纳数百个模式,故称为多模光纤。有源器件包括光源、光检测器和光放大器,这些器件是光发射机、光接收机和光中继器的关键器件,和光纤一起决定基本光纤传输系统水平。光无源器件主要有连接器、耦合器、波分复用器、调制器、光开关和隔离器等,这些器件对光纤通信系统构成、功能扩展和性能提高都是不可缺少的。光源是光发射机关键器件,其功能是把电信号转换为光信号。目前光纤通信广泛使用光源主要有半导体激光二极管或称激光器和发光二极管,有些场合也使用固体激光器。一个完整光纤通信系统,除光纤、光源和光检测器外,还需要许多其它光器件,特别是无源器件。这些器件对光纤通信系统构成、功能扩展或性能提高都是不可缺少的。虽然对各种器件的特性有不同的要求,但普遍要求插入损耗小、反射损耗大、工作温度范围宽、性能稳定、寿命长、体积小、价格便宜,许多器件还要求便于集成。

光纤大容量数字传输目前用同步时分复用(tdm)技术,复用又分为若干等级,因而先后有两种传输体制:准同步(pdh)和同步数字系列(sdh)。pdh早在1976年就实现了标准化,目前还大量使用。随光纤通信技术和网络发展,pdh遇到了许多困难。sdh解决了pdh存在问题,是一种比较完善的传输体制,已得到大量应用。该体制不仅适用于光纤信道,也适用于微波和卫星干线传输。随着技术进步和社会对信息需求,数字系统传输容量不断提高,网络管理和控制要求日益重要,宽带综合业务数字网和计算机网络迅速发展,迫切需要建立在世界范围内统一的通信网络。在这种形势下,现有pdh许多缺点也逐渐暴露出来,主要有:北美、西欧和亚洲所用三种数字系列互不兼容,无世界统一标准光接口,使得国际电信网建立及网络营运、管理和维护十分复杂和困难。各种复用系列都有其相应的帧结构,使网络设计缺乏灵活性,不能适应电信网络不断扩大、技术不断更新的要求。由于低速率信号插入到高速率信号,或从高速率信号分出,都必须逐级进行,不能直接分插,因而复接/分接设备结构复杂,上下话路价格昂贵。与pdh相比,sdh有下列特点:sdh用世界上统一标准传输速率等级。sdh各网络单元光接口有严格标准规范。sdh帧结构中,丰富开销比特用于网络运行、维护和管理,便于实现性能监测、故障检测和定位、故障报告等管理功能。用数字同步复用技术,最小复用单位为字节,不必进行码速调整,简化了复接分接的实现设备,由低速信号复接成高速信号,或从高速信号分出低速信号,不必逐级进行。用数字交叉连接设备dxc可对各种端口速率进行可控连接配置,对网络资源进行自动调度和管理,既提高了资源利用率,又增强了网络抗毁性和可靠性。sdh用dxc后,大大提高网络灵活性及对各种业务量变化适应能力,使现代通信网络提高到一个崭新的水平。

光纤通信技术的发展及趋势

摘要:本文对现代科学技术发展的特点和趋势进行了初步分析,科学技术正在呈现加速发展、社会化和各学科领域相互渗透的特点,以及高技术不断渗透、软件备受重视、技术与科学共鸣、军导时代走向终结等趋势,探讨现代科学技术的发展趋势,对于寻求科学技术发展的路径和机遇,从而推动科学技术和社会的发展具有重要意义。

现代科学与现代技术紧密相联,突飞猛进的发展正在导致全球政治、经济、社会的激烈变革。现代科学技术对社会进步的巨大推动作用,已显示出与以往任何历史时期不同的新的特点。

2.1加速性发展的特点。

科学技术加速发展,呈现知识爆炸的现象。二十世纪的后三十年来,人类所取得的科技成果,比过去2000年的总和还要多。二十世纪中叶人类的科技知识每10年增加1倍,当代,每3-5年增加1倍。以此推算,人类在2020年所拥有的知识当中,有90%现在还没有创造出来。今天的大学生到毕业的时候,他所学的知识有60%到70%已经过时。

2.2科技应用于生产的周期大大缩短。

在19世纪,电动机发明到应用共用了65年,电话用了56年,无线电用了35年,直空管用了31年,电磁波通信时隔26年;而到了20世纪,这种时间间隔大大缩短了,如雷达从发明到应用用了15年,喷气发动机用了14年,电视用了12年,尼龙用了11年,集成电路仅仅用了2年时间得到应用,而激光器仅仅用了1年。

2.3社会化的特点。

与协调中,政府的作用愈来愈重要。如美国成立了国家科学技术委员会,韩国成立了总统亲自主持的“技术振兴审议会”,日本欧盟国家也都相继加强了政府的作用。

现代科学技术的发展及其所产生的影响,达到了前所未有的广度和深度,它已经成为一个国家和社会发展的重要决定因素之一。同时,现代科学技术在各种因素的作用下,也发生了巨大的变化,呈现出了新的发展趋势,主要表现在以下四个方面[3]。

3.1高技术不断渗透。

90年代工业技术的一大特征是走向高技术化。具体地说,今后的工业领域将应用以计算机、电子器件为核心的电子技术;精细陶瓷、金属新材料及其复合材料等新材料系列;以重新编排遗传基因、组织培养为基础技术的生物技术;以工业机器人、计算机辅助设计和制造系统等为基础的生产系统;以宇宙航空、海洋开发、原子能利用等为基础的巨型系统技术,等等。

3.2软件倍受重视。

当前,世界各国都很重视软件的发展,推行软件化。这一倾向正不断涌入由硬件操纵的技术世界。一方面,信息技术将进入事务部门和生产现场,使生产活动的效率和柔性得到提高,实现工业信息化。另一方面,以信息为中心的新型产业将逐步形成。

这一流向中,人的创造性活动是至关重要的因素,特别是设计人员、计算机编程人员和数据专家等,将发挥越来越重要的作用。由此可见,加深对信息、软件价值的认识,加快培养软件人材,已成为当务之急。

3.3技术与科学共鸣。

随着技术革新的日新月异,“科学”与“技术”的界线将变得难于划清,而且日。

益接近和共鸣。目前,在某些领域(如超导和生物学等),科学研究已和技术开发围绕同一课题展开,研究、开发工作浑然一体。

科学与技术接近和共鸣,将强有力地推进90年代工业技术的进步,新材料、电子、生物诸领域出现的新技术,将成为21世纪技术革新的支柱。

3.4军导时代走向终结。

以前,军用技术和民用技术之间的传播方式,总是由军用转向民用,军用是第一位的。美国的计算机、集成电路、激光等技术,就是作为军用技术首先开发出来然后向民用工业扩散的。

对于我们这样一个国家、一个世界来说,现代科学技术已经发展到一个全新的时代。因此。我们对科学技术的研究必须要有一个全新的视角、全新的思维、全新的理念。严峻、近似残酷的国际竞争现实一再提醒我们,科学技术的落后和缺乏剖新,必然导致经济发展的落后和乏力,只有依靠科学技术特别是高新技术才能大幅度提高劳动生产率,在发展经济和国际竞争中占居主动。让我们共同携起手来,为创立和发展科学技术研究事业而奋斗努力。我们坚信,2l世纪的中国科学技术事业必定会有一个大的发展!

参考文献。

1.路甬祥.百年物理学的启示[j].新华文摘,2005,(17):34-36.2.诸锡斌等.自然辩证法概论[m].云南科技出版社,2004.3.米克容,范杰敏等.论现代科学技术发展的新趋势[j].山东经济,2006,22(6):5-9.

浅谈电信光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人探听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

浅谈电信光纤通信技术

对光纤通信技术来说,主要的细节技术在于光纤光缆、光交换、光源器件以及光网络等。对于光纤光缆来说,我们一般考察它的通信光纤与特种光纤,近些年来随着新的光波段的发现,光谱范围基本扩大了30%左右,沿着这种趋势发展,未来的光纤通信在速度和容量上将获得质的飞跃。另外特种光纤现在也在研制之中,其中比较有前景的如有源光纤、光纤光栅、多芯单模光纤等,有源光纤是指渗入稀土离子的光纤,稀土离子的作用在于构成激光活性物质,以此制造光纤放大器,光纤放大器是光弧子传输的关键一环,有了它,光弧子才能实现超远距离的传输。光纤光栅是指利用紫外线照射,从而在光纤芯内部产生周期性的折射率变化的光纤,其目的是为了生成光栅,光栅是一种常用的选择频率的器件,利用它可以制成多种器件。多芯单模光纤是指将多根光纤用一个外包层包裹起来,但内包裹层又是单独的一种光纤,这种特种光纤的特点是成本很低,基本只有常用光纤的一半,它的目的在于大批量的建设光纤网络,目前已经在实际中广泛应用[2]。对于光纤通信技术的应用来说,常见的有波分复用技术、用户接入技术以及光联网技术等。波分复用的原理是根据光波的频率将其分类,然后以光波为信号的载体,利用光合波器对其进行合并,这样可以将不同波长的光波在一条光线路中传输,从而使得光波可以忽略波长区别而统一传输,这种方法对于工程应用特别重要,目前各个电信公司都广泛采用这种技术来整合信息传输,而对于不同的用户也有针对性的服务,整体成本也较低,因此这种方法已经成为现代光纤通信技术中重要的一部分。用户接入是指利用光纤通信来接入互联网至用户,在电子通信时代,网络接入一般是依靠电话线等实现,而这种方式传输网络速度很慢,而且接入用户数量也较小,无法满足人们的需求。随着近些年来信息技术和计算机技术的发展,人们对于网络的需求越来越高,而光纤通信技术则为其提供了有力的保障,21世纪以来,我国就开始大量推广光纤通信技术,到近几年,基本上实现了全国范围内的光纤网络接入,给人们的生活带来了巨大的便利。光联网技术是指通过光纤通信技术将用户的信息进行共享,这是建立在上述光波复用基础之上的,其实光联网技术本质上仍是一种网络技术,而其实现手段是光纤通信。在传统的电子传输式互联网中,受到传输速度和传输体量的影响,要实现用户实时共享信息是非常困难的,而光纤通信技术由于其出色的传输表现则可以实现这个目标,首先高速的信息传输使得大部分地区的信号延迟降低,有的地方甚至为零延迟,从而在较大范围内实现了信息的共享[3]。众所周知,我国幅员辽阔,实现大范围内的信息通信共享是具有重要意义的,近些年来基于光纤通信技术的光联网技术大大加强了各个地区之间的连接,也为人工智能等新兴技术奠定了网络基础。

浅谈电信光纤通信技术

光纤通信技术相较其它通信手段来说特点鲜明,首先是其传输速度快且传输体量大,其次是损耗很低且传输距离长,还包括其抗干扰能力强等。因为我们知道光的频带远远超过电,这使得光纤通信的容量非常之大,且由于光纤自身的体积非常小,相比其它介质来说质量也较轻,因此光纤比较容易铺设,在有限的空间中可布置的光纤数量比较多,这些特性使得光纤通信技术传输速度快且体量大,而且对空间的要求也比较小,能很好地满足当今有线通信的要求。其次利用光作为媒介进行信息传输的损耗非常小,这主要得益于光信号的衰减很小,石英系统的损耗光纤相较其它媒介其损耗已经很低,而在研究中的非石英系统超低损耗光纤则会实现更低的损耗,这会极大地节省成本。除此之外,因为一般的光纤管线是由石英材料制造的,而石英本身是一种绝缘材料,因此光纤通信也附带了一定的绝缘性,这使得其在传输信息过程中很少会受到为外界信号的干扰,且基于石英材料的光纤线路也不会轻易因为电离层而受到损害,所以光纤的线路与常见的高压线路一起架设是可行的,石英材料本身也不惧怕腐蚀,而且还能很好地抵御雷电、太阳光等外界干扰,这很大程度上加快了通信的发展。另一方面,传统的电波传输信息时,会受到由于电磁波的泄露而产生问题,但是在光纤传输过程中,光波导结构可以将光信号很好地限制在管路中,而少数泄露的射线也会被环绕于光纤之上的材料所吸收,因此一般情况下不会发生泄露。通过上述分析我们可以得知光纤通信的诸多优势,但是也应该注意到它本身也有一定的缺陷,首先就是它容易受到色散特性的影响,这主要是因为光纤传输过程中是以不同频率和模式来实现的吗,而这会使得信号出现失真现象,此时传输至终点的信号会与预期有所差别。

相关范文推荐

猜您喜欢
热门推荐